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Abstract

An analytic procedure for solving nonlinear differential equations, the BLUES
function method, is studied. It is first implemented for differential equations that
can be reduced to ordinary differential equations (ODEs) with one independent
variable. When an inhomogeneous source (or sink) is present in the equation,
the BLUES function method provides a natural way to obtain approximate
solutions. In this setup, different systems from nonlinear physics and other
sciences are investigated, particularly in the context of nonlinear travelling
waves within fluid dynamics and biophysics. The BLUES method is applied
to a fractional ordinary differential equation (FDE) in the context of heat flow
within a semi-infinite rod. An initial comparison with another iterative method
is carried out, showing that the BLUES method possesses a larger region of
convergence.

Next, the method is extended to the realms of partial differential equations
(PDEs) and systems of coupled nonlinear differential equations (CDEs). In
both of these areas, the method is reformulated slightly to accommodate the
particulars of that area, and is consequently studied first by means of simple
examples and finally by means of a model for interface growth under the
influence of shear flow. Within the field of (coupled) PDEs, the role of the
external source is now fulfilled by the initial condition through multiplication
with a point source at t = 0. A comprehensive comparison with preexisting
methods is performed and it is shown that in many cases the BLUES function
method is an ideal candidate when choosing between iterative methods. When
studying systems of coupled ordinary differential equations, the linear operator
can often be sensibly chosen in such a way that it includes the fixed points of
the nonlinear system, greatly increasing the BLUES function method’s region
and speed of convergence.

Lastly, the hierarchical random deposition model (HRDM) is studied. This
deposition process takes place in a viscous medium so that the particles hit the
surface in order of size. The size follows a hyperbolic distribution, allowing the
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iv ABSTRACT

larger particles to hit the substrate first. Additionally, square “holes” following
the same distribution can be excavated. In particular, the connection between
the (non)-proliferation of coastal points (level sets) and lateral percolation
is investigated by analytical means and numerical simulations. It is found
that exactly at the percolation threshold Pc, the number of coastal points (or
coastlines in two dimensions) exhibits logarithmic fractal behaviour, increasing
linearly with increasing generation. Next, the dynamics of the deposition are
adjusted to allow particles to stick sideways to preexisting material, transforming
the hierarchical random deposition model into a hierarchical ballistic deposition
model (HBDM). The latter is clearly still a random model but the sideways
growth introduces lateral correlations between different columns. The surface
length increment, the fraction of closed-off voids and the associated porosity
are studied by means of numerical simulations and analytical approximations.
Numerical results concerning percolation and roughness exponents in the HBDM
are given and briefly discussed in the associated appendix.



Samenvatting

Een analytische methode om niet-lineaire differentiaalvergelijkingen op te lossen
wordt bestudeerd. De nieuwe methode wordt de BLUES functie methode
genoemd. Deze wordt eerst geïmplementeerd voor gewone differentiaalverge-
lijkingen (ODEs) waarbij er maar één onafhankelijke variabele aanwezig is.
Wanneer een inhomogene bron voorkomt in deze differentiaalvergelijking vormt
de BLUES functie methode een natuurlijke keuze om benaderende oplossingen
te bekomen. Binnen deze context worden verschillende systemen uit niet-
lineaire fysica en andere wetenschappen bestudeerd, met name het fenomeen
van lopende golven binnen vloeistofdynamica en biofysica. De BLUES methode
wordt nadien ook toegepast op een fractionele differentiaalvergelijking (FDE)
die warmtegeleiding binnen een halfoneindige staaf beschrijft. Een initiële
onderlinge vergelijking met een andere iteratieve methode wordt uitgevoerd,
waaruit blijkt dat de BLUES methode een grotere convergentiestraal bezit.

Vervolgens wordt de methode uitgebreid naar partiële differentiaalvergelijkingen
(PDEs) en gekoppelde differentiaalvergelijkingen (CDEs). Binnen het kader
van deze uitbreidingen wordt de BLUES methode telkens licht aangepast om
specifieke kenmerken in de methode op te nemen. Zo zal binnen het domein van
de (gekoppelde) PDEs de beginvoorwaarde de rol van de externe bron of put
overnemen en zal er bij gekoppelde vergelijkingen de mogelijkheid bestaan om
de lineaire operator oordeelkundig te bepalen zodat de dekpunten reeds in het
lineaire systeem aanwezig zijn. Dit bevordert zowel de convergentiesnelheid als
de regio. Een uitgebreide vergelijking met andere methodes wordt uitgevoerd.
Hieruit komt naar voren dat de BLUES functie methode een uitstekende
kandidaat is wanneer men moet kiezen tussen verschillende iteratieve methodes.

Tot slot wordt het hiërarchisch random depositiemodel (HRDM) bestudeerd.
In dit model vindt de depositie plaats in een viskeus medium zodat de
deeltjes het oppervlak raken in volgorde van grootte. Deze grootte volgt
een hyperbolische verdeling waarbij dat de grootste deeltjes eerst op het
substraat landen. Bovendien kunnen ook vierkante “gaten” gegraven worden
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vi SAMENVATTING

die dezelfde verdeling volgen. De connectie tussen de toe- of afname van
kustpunten (of niveaukrommen) en laterale percolatie wordt onderzocht door
middel van analytische berekeningen en numerieke simulaties. Hieruit kan
worden vastgesteld dat exact op de percolatie grenswaarde Pc, het aantal
kustpunten (of kustlijnen in twee dimensies) logaritmisch fractaal gedrag
vertoont en bijgevolg lineair toeneemt met toenemende generatie. Vervolgens
worden de spelregels van het random depositieproces aangepast om toe te
laten dat deeltjes zich zijdelings kunnen vasthechten aan het bestaande
materiaal, wat resulteert in een zogenaamd hiërarchich ballistisch depositieproces
(HBDM). Deze dynamica induceert sterke laterale correlaties tussen verschillende
kolommen. De lengtetoename van het oppervlak gevormd door dit ballistisch
depositieproces, het aantal afgesloten reservoirs en bijgevolg ook de porositeit
van het materiaal worden numeriek bepaald en ondersteund met benaderende
analytische uitdrukkingen. Aanvullende numerieke resultaten voor percolatie en
de ruwheidsexponent van het oppervlak worden gebundeld in de bijbehorende
appendix.
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Chapter 1

Introduction and overview

1.1 Differential equations

The history of differential equations (DEs) is still somewhat of a murky topic,
originating in the scientific “war” between on one hand Isaac Newton and on the
other hand Gottfried Leibniz. All we can say with certainty is that in the last
three decades of the 17th century, the study of differential equations arose as a
distinct field within mathematics. Nowadays these equations arise in almost
every subject one can imagine: from wireless communication to the modelling
of animal migration or chemical reactions.

Differential equations are equations wherein the derivatives of the unknown
function occur, possibly with the argument of the function itself and any external
influences, which we call sources or sinks. When, in every term of the differential
equation, the sum of the powers of the unknown function and/or its derivatives
is 0 or 1, the equation is called a linear DE. The example almost everyone is
familiar with is Newton’s second law

F (t) = m
d2x(t)

dt2 , (1.1)

where m is the mass of an object, F is the force, x(t) is the time-dependent
position and t is the time. When the force F depends linearly on time,
space or velocity, the solution of equation (1.1) can easily be found by direct
integration, substitution or a whole plethora of methods that are known to
every undergraduate science student. However, when the force is a nonlinear
function of x(t) (e.g. Duffing oscillator), these methods often fail.
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2 INTRODUCTION AND OVERVIEW

In general, one can not expect one analytical method to exist that can solve
every differential equation imaginable. Even for relatively simple cases such
as Abel’s equation of the first kind, u′(t) = u3(t) + t, where derivatives with
respect to t are indicated with a prime, no solution in terms of elementary
functions (exponentials, polynomials, trigonometric functions,etc.) is possible,
nor in terms of special functions (Bessel, Airy, Kummer, etc.) [1].

A way of trying to find some semblance of a “solution” is by using power
series. One can then spend tedious hours of spitting out terms in the series
(or by forcing a computer to do it), only to achieve results that are often
unsatisfactory. More often, nonlinear differential equations are analysed by
making use of solution techniques such as the inverse scattering transform that
rely on symmetry arguments, or by trying to find a coordinate transform that
maps the problem onto a related problem that is easier to solve.

Luckily, numerical methods may provide some relief. The sheer amount of the
methods that are available is almost overwhelming and one can be reasonably
sure to find a numerical package that gets the job done. However, all of these
methods have their limitations and underlying assumptions. It is only through
careful theoretical analysis of the equations under consideration that one can
know whether the results received from numerical solvers are actually useful.
The best-known methods such as Euler’s method or the Runge–Kutta methods
are bound to be found in every introductory textbook on numerical analysis so
we will defer to those when needed. A brief discussion on the methods used in
this thesis is given in section 2.6.

1.2 Deposition models

The study of surface growth and deposition is one of the paradigms in statistical
physics. By understanding the processes underlying growth phenomena, one
can control the precise physical properties of materials that are used in e.g.
nanotechnology, biophysics or medicine. The models that generate such surfaces
generally possess a simple set of “rules” describing the process. Nevertheless,
the morphology of the interfaces can quickly become nontrivial by adding more
and more realistic assumptions. Generally, deposition models and interfaces are
described with a set of quantities such as scaling exponents, fractal dimensions,
porosity or surface length increments.

In practice, we differentiate between discrete and continuous models for surface
growth. In the discrete case, a (finite) set of sites can be identified for particles
to be deposited at. This deposition happens at discrete time intervals. The most
well-known discrete deposition models are the random deposition model and the



DEPOSITION MODELS 3

ballistic deposition model. The former possesses an exact solution and assumes
that each particle column grows independently of the others and no surface
relaxation, i.e., diffusion to other sites, is possible. If relaxation is included,
a deposited particle migrates to a neighbouring site with lower height. This
variation does not possess an analytical solution but it is possible to find the
scaling exponents by studying the symmetries of the associated linear stochastic
Edwards-Wilkinson equation [2],

ht(x, t) = D∇2h(x, t) + η(x, t) , (1.2)

where h(x, t) is the height of the resulting surface at a position x and time t,
with Gaussian white noise η(x, t), which is invariant under self-affine scaling.
The constant D is the surface tension. The usual scaling exponents α and z are
found by considering the surface width

W 2(t, L) = aL2αG

(
t

bLz

)
(1.3)

where a, b are constants that vary with the system under consideration. The
exponent z characterises the scaling of the roughness in time while α describes
the spatial scaling of the roughness for t → ∞. The roughening exponent
β can be found by considering the scaling G(x) ∼ x2β for x → 0. Also,
G(x)→ constant for x� 1. For the Edwards-Wilkinson equation in d = 1, the
exponents are α = 1/2, β = 1/4 and z = 2, with the following relations: α = βz
and z − 2α = 1.

Note that the random deposition model is not able to create porous structures
as a result of the independent growth of columns and the diffusion to lower sites.
A nontrivial extension that does allow pores to form is the ballistic deposition
model, whereby particles can attach laterally to the side of a neighbouring
column. Allowing for this kind of dynamics, the surface can grow tangentially
as well as vertically. Due to overhangs being created, the ballistic deposition
model possesses a nonlocal character, obstructing lower sites from receiving any
new particle flux. The stochastic differential equation that corresponds to this
process is the Kardar-Parisi-Zhang equation [3]

ht(x, t) = D∇2h(x, t) + λ

2 (∇h(x, t))2 + η(x, t) , (1.4)

where the gradient-squared term indicates slope-dependent growth. In one
dimension, the scaling exponents can be determined by a renormalisation
procedure, yielding the exact values α = 1/2, β = 1/3 and z = 3/2, with
α+ z = 2. One classical assumption in these models is that all of the deposited
particles are of the same size, being deposited sequentially (one-by-one) on a
substrate. Relatively little research has investigated synchronous deposition
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where multiple particles are deposited simultaneously, or particles of different
sizes that may exhibit scaling themselves. The former models reduce to the
sequential processes in the “dilute” limit [4] in which the deposition probability
P → 0. In this thesis we will study both effects first in a random deposition
setting and later in a ballistic deposition model.

Continuous models move away from the assumptions of discrete time and space,
instead allowing for deposition on a real space whereby the deposition time is
usually extracted from an exponential distribution. We will not discuss these
models any further.

With the advent of experimental techniques such as vapor deposition [5] or
electron beam evaporation [6], thin-film surfaces (often metallic in nature) can
be created in a laboratory, permitting a fine measure of control. This provides an
invaluable source of data that can be used for comparison with both analytical
results and numerical simulation.

1.3 Structure of the thesis

The setup of this thesis is as follows. In chapter 2, a birds-eye view is given of
the most widely used methods to solve nonlinear differential equations, their
advantages and disadvantages are discussed, and the BLUES function method
is situated in this framework. A brief comment on other iterative procedures is
given.

Each of the chapters 3, 4, 5, 6 and 7 can be read as standalone works (with the
possible exception of chapter 4), since they are based on (published) articles
and are therefore mostly self-contained.

In chapter 3, the original formulation of the BLUES function method is applied
to four ODEs that are derived from partial differential equations (PDEs) with
external comoving sources by making a travelling-wave Ansatz, and the feasibility
to calculate higher-order approximants for the soliton or travelling-wave solution
is investigated. Chapter 4 treats a fractional differential equation (FDE) in one
coordinate, effectively connecting this chapter to the previous chapter 3. In this
chapter, a first comparison is made between the BLUES function method and
the Adomian decomposition method (ADM).

The next step is to move away from the realm of ODEs and study PDEs, which
is done in chapter 5 for PDEs with a first-order time derivative. The BLUES
function method is modified slightly to accommodate the inclusion of initial
conditions and the newly minted formulation is once again tested out on three
simple PDEs. For each of these equations the exact solution is known. The
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method is then compared to an arsenal of other methods: the ADM, VIM,
GVIM and HPM. Knowing the exact solution, the performance of the BLUES
function method can be weighed against the other methods. While these basic
examples are instructive, they are rather simplistic and are only suited for
testing. Hence, I consequently study a heuristic model for interface evolution
under the combined influence of deposition and lateral shear for Gaussian and
spatially periodic initial conditions.

In chapter 6, the different parts of the BLUES function method come together to
study systems of coupled differential equations. First, the SIRS compartmental
model for the propagation of infectious diseases is studied by combining the
BLUES function method with a matrix formalism. Subsequently, this new
formulation of the method is combined with the previously developed extension
to PDEs with initial conditions to study a second-order-derivative-in-time
nonlinear telegrapher’s equation.

Chapter 7 first treats some aspects of random hierarchical deposition, in
particular the connection between coastal point (non-)proliferation and
percolation, and briefly discusses surface roughness properties. Next, a nontrivial
extension is studied where deposited matter can “stick” to the substrate
sideways, creating protrusions and introducing lateral correlations between
different columns. For the latter model, the surface length increment and the
porosity are studied analytically and by means of numerical simulations.

The appendices A, B and C elucidate some of the result of the thesis. This is
either done in the form of extra or in-depth calculations of results mentioned in
the text of the regular chapters, or in the form of numerical results that are yet
unsupported by analytical calculations.





Chapter 2

Iterative methods for
differential equations

In this precursory chapter I will first develop the BLUES function method
for nonlinear ordinary differential equations and subsequently introduce the
other methods that are used for comparison in the other chapters. In the last
part of this chapter, I briefly discuss other iterative procedures that can be
implemented into most of the methods, including the BLUES function method.

2.1 Beyond Linear Use of Equation Superposition

The theory of BLUES functions and the associated iteration sequence have been
developed in [7] for ODEs. Hence, we will recall some of the main results here
and develop the method further into a practical tool. Let us start from the
original formulation of the method with a nonlinear ODE that can be written
as an operator Nz and assume a piecewise analytic function B(z) which solves

NzB(z) = δ(z) (2.1)

with suitable boundary conditions. The Dirac delta source is added to
compensate a possible discontinuity of the derivative of order (n− 1) at z = 0
in the case of an n-th order DE. The (bio-)physical relevance of adding a source
or sink has been discussed in [8] in the context of reaction-diffusion-convection
equations and can e.g. indicate the injection of a nutrient or poison, respectively
for a source or sink. The form of equation (2.1) is reminiscent of the Green

7



8 ITERATIVE METHODS FOR DIFFERENTIAL EQUATIONS

function approach used for linear DEs, and we assume we can construct an
associated linear operator Lz in such a way that B(z) also solves

LzB(z) = δ(z), (2.2)

with the same boundary conditions, which makes B(z) a Green function for the
linear operator Lz. We can now consider the nonlinear DE with an arbitrary
source ψ(z) and ask whether the solution to this DE can be found using the
convolution product B ∗ ψ, knowing that this product is a solution of the
linear DE with the same source ψ(z). A function B(z) which solves both (2.1)
and (2.2) was called a BLUES (Beyond Linear Use of Equation Superposition)
function in [7] because we are using the convolution with the source beyond the
domain of the linear DE. The construction of the general solution U(z) to the
nonlinear DE with a source ψ(z)

NzU(z) = ψ(z) (2.3)

starts by defining a residual operator Rz ≡ Lz − Nz and by calculating the
solution to the nonlinear problem in the form U(z) = (B ∗ φ)(z), i.e.,

Nz(B ∗ φ)(z) = ψ(z), (2.4)

which is also in the form of a convolution product B ∗ φ, where the associated
source φ(z) can be calculated by considering the action of the residual operator
on (B ∗ φ)(z), i.e.,

Rz(B ∗ φ)(z) = Lz(B ∗ φ)(z)−Nz(B ∗ φ)(z)

= φ(z)− ψ(z) .
(2.5)

Rearranging this equation, we can find an implicit equation for φ(z),

φ(z) = ψ(z) +Rz(B ∗ φ)(z). (2.6)

To obtain the solution to the nonlinear DE (2.3), equation (2.6) can be iterated
in order to calculate an approximation in the form of a sequence in powers of
the residual Rz. This was expected to be especially useful when the source
ψ(z) is sharply localized. Because RzB(z) = 0, one can expand meaningfully
in powers of Rz when the source does not differ much from the delta source.
The small parameter in this expansion is the width of the source ψ(z) divided
by the characteristic length of B(z). However, our investigation has shown that
the method may also work well when the source is not sharp and when there is
no small parameter. Our study has also revealed that it is not necessary for
B(z) to be a solution of (2.1). The property (2.2) is sufficient.
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To zeroth order, the sources φ(0)(z) and ψ(z) are identical and the approximation
is the convolution product

U
(0)
ψ (z) = (B ∗ φ(0))(z) = (B ∗ ψ)(z). (2.7)

To nth order (n ≥ 1), the approximate solution can be found [9] by iterating
(2.6) and taking the convolution product with B(z), i.e.,

U
(n)
ψ (z) = (B ∗ φ(n))(z) = (B ∗ ψ)(z) +

(
B ∗ RzU (n−1)

ψ

)
(z)

= U
(0)
ψ (z) +

(
B ∗ RzU (n−1)

ψ

)
(z).

(2.8)

Testing the usefulness of the iteration sequence (6.53) for different nonlinear
systems and providing more detail of the method and its applications are the
main goals of this thesis.

The BLUES function method can be naturally extended to FDEs, PDEs or
to systems of coupled DEs. This often entails some minor but important
modifications of the procedure outlined above. These variations on the BLUES
function method will be elaborated upon in the corresponding chapters 4, 5
and 6, for FDEs, PDEs and systems of DEs, respectively.

Before studying the method in all of the aforementioned areas, we briefly
elucidate other related methods that will often be used to gauge the accuracy
of the BLUES function method.

2.2 Adomian decomposition method

The Adomian decomposition method (ADM) [10, 11] was first introduced by
G. Adomian at the end of the previous century and was originally developed
for nonlinear stochastic operator equations [12]. It was later modified to solve
different kinds of ODEs, PDEs and systems of coupled equations. The method
assumes that the solution u to a given differential equation can be written as
the series

u =
∞∑
n=0

un , (2.9)

where now the component functions un, n ∈ N need to be determined. Consider
a general differential equation

Lu+Ru+Nu = f , (2.10)
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where L is the highest-order derivative, R is the remaining linear operator, N
is a nonlinear operator and f is an inhomogeneous source. When the DE (2.10)
is a PDE, the linear operator L is often chosen to be the highest-order time
derivative, instead of a higher-order spatial derivative. The method permits
a certain measure of flexibility in choosing the linear operator. The only
requirement is that it is easily invertible, i.e., L−1 should exist. As this linear
operator is generally a derivative, the inverse operator will be a (multiple)
integral.

Now apply the inverted linear operator L−1 to both sides of the equation (2.10)
and rearrange. The solution u is now given by

u = g − L−1(Ru)− L−1(Nu) , (2.11)

with the function g being the integrated source f and any extra terms originating
from either initial or boundary conditions. The L−1(Ru) term should in principle
present no problems as it is linear. The L−1(Nu) term, however, does present
a problem. The ADM now proposes to decompose the nonlinear term as an
infinite series of the so-called Adomian polynomials An, i.e.,

Nu =
∞∑
n=0

An . (2.12)

Inserting equations (2.9) and (2.12) into equation (2.11), i.e.,
∞∑
n=0

un = g − L−1

(
R

∞∑
n=0

un

)
− L−1

( ∞∑
n=0

An

)
(2.13)

admits the following decomposition of the solution into the component functions
un,

u0 = g

u1 = −L−1 (Ru0 +A0)

u2 = −L−1 (Ru1 +A1)

...

un = −L−1 (Run−1 +An−1) .

(2.14)

The final piece of the puzzle is the calculation of the Adomian polynomials An.
The series (2.12) is a Taylor series of the nonlinear function Nu about u0, i.e.,

Nu = Nu0 + dN
du (u− u0) + 1

2!
d2N

du2 (u− u0)2 + . . . (2.15)
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Rearranging this equation by noticing that u− u0 = u1 + u2 + u3 + . . . results
in

Nu = Nu0 + dN
du (u1 + u2 + . . . ) + 1

2!
d2N

du2 (u1 + u2 + . . . )2 + . . . (2.16)

By equating (2.16) and (2.12), the expressions for the Adomian polynomials
can be calculated recursively [13]

A0 = Nu0

A1 = u1
dN
du (u0)

A2 = u2
dN
du (u0) + 1

2!u
2
1

d2N

du2 (u0)

...

An = 1
n!

dn
dλn

[
N

(
n∑
i=0

uiλ
i

)]∣∣∣∣∣
λ=0

.

(2.17)

Note that the compact expression for An is nothing more than Faà di Bruno’s
formula [14] for the chain rule for higher-order derivatives, applied to the
functional composition of N and

n∑
i=0

uiλ
i.

Now that all the pieces of the puzzle are in place, the solution to equation
(2.10) can be found by iteratively solving (2.14) and substituting the component
functions into the general solution (2.9).

However, one must take into account both the advantages and disadvantages of
the ADM [15]. While the recurrence is easy to set up and implement numerically,
the drawback is that in general the method is only useful for small values of
the independent variables. Furthermore, the convergence is slow because of
the exponentially increasing difficulty to calculate new Adomian polynomials.
There have been countless modifications [16, 12, 17] of the method to (partially)
solve the problem of either the slow convergence speed or the small region of
convergence.

2.3 Variational iteration method

While the ADM assumed the solution to be of the form of an infinite series of
component functions, the variational iteration method (VIM) calculates the
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solution as a sequence of approximants. It was developed by Ji-Huan He [18, 19]
and is one of the most widely used approximation methods for analytically
solving (nonlinear) differential equations.

Consider the general nonlinear differential equation (2.10) introduced in the
previous section 2.2,

Lu+Nu = f , (2.18)
where we have combined Lu and Ru into one linear operator, which we will
again call Lu. No confusion should arise from this substitution, as the meaning
of Lu will be clear from the context. The VIM introduces the following ad hoc
correction functional

un+1(t) = un(t) +
t∫

t0

ds λ(s, t) (Lun(s) +Nũn(s)− f(s)) , (2.19)

where λ(s, t) is a Lagrange multiplier and ũn is a restricted variation, which
means that δũn = 0. Also, assume that δf = 0. The Lagrange multiplier can
be calculated by considering the following variation

δun+1(t) = δun(t) + δ

t∫
t0

ds λ(s, t) (Lun(s) +Nũn(s)− f(s))

= δun(t) + δ

t∫
t0

ds λ(s, t) (Lun(s))

(2.20)

Once this Lagrange multiplier is determined, the successive approximations can
be calculated through (2.19), i.e.,

u1(t) = u0(t) +
t∫

t0

ds λ(s, t) (Lu0(s) +Nu0(s)− f(s))

u2(t) = u1(t) +
t∫

t0

ds λ(s, t) (Lu1(s) +Nu1(s)− f(s))

...

(2.21)

The VIM also suffers from some drawbacks. The main disadvantage the VIM has
with respect to the ADM is the calculation of an exponentially increasing number
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of useless terms, drastically slowing down the convergence and often introducing
large divergences for higher values of the independent variables. Once again,
modifications of the method have been proposed, which mostly included either
cutting off higher-order terms before integration [20], or introducing nonphysical
convergence-control parameters [21]. Nevertheless, the VIM remains one of the
most widely-used iterative methods, partly because of the intuitive “plug-and-
play” setup and the often larger region of convergence than the ADM for the
same number of iterations needed.

A nontrivial extension to the VIM we will often use is the so-called VIM with
Green function or GVIM [22]. In this method, the Lagrange multiplier is
replaced by the Green function for the chosen linear operator. For initial-
value problems, this amounts to choosing the optimal value for the Lagrange
multiplier.

2.4 Homotopy perturbation method

The homotopy perturbation method (HPM) is the final iterative method we will
use in this thesis. It was also developed by Ji-Huan He [23] as an alternative
to the VIM. It is based on a Taylor series expansion of the solution around
an embedding parameter p. First, consider again the most general differential
equation (2.18) on the domain Ω, i.e.,

Lu+Nu− f(r) = 0 , r ∈ Ω (2.22)

and construct a homotopy v(r, p) : Ω × [0, 1]→ R that satisfies

H(v, p) = (1− p) (Lv − Lu0) + p (Lv +Nv − f(r)) = 0 , (2.23)

where we call p ∈ [0, 1] the embedding parameter. It is easy to see that the
homotopy (2.23) continuously deforms the linear equation (p = 0)

H(v, 0) = Lv − Lu0 = 0 (2.24)

into the nonlinear equation

H(v, 1) = Lv +Nv − f(r) = 0 (2.25)

or, equivalently, u0 into u. Now assume that the solution v(r, p) can be
represented as a power series in p, i.e.,

v =
∞∑
i=0

vip
i . (2.26)
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Eventually setting p = 1 results in the solution of equation (2.22).

The first step in this procedure is choosing an initial approximation u0 and
substituting (2.26) into the homotopy (2.23). One can then collect terms
with the same powers of p, which need to be identically zero in order for the
homotopy to be zero. This amounts to decomposing the problem into a set of
linear differential equations that are easier to solve.

There is, however, one major drawback in choosing to use the HPM instead of
the ADM or VIM. The second derivative of N(v) with respect to v should be
small, because the embedding parameter can become quite large, i.e., p → 1.
Aside from this, the computational complexity to solve the associated hierarchy
of linear differential equations increases fast, requiring more computational
power in each iteration. Additionally, sometimes the the solutions are not
continuous in p, invalidating the extension of u0 to v through the homotopy.

2.5 A note on iterative processes

All of the above methods (except the HPM) use versions of so-called Picard
iteration. Consider a sequence {un} and a (nonlinear ) mapping T : C → C,
with C a nonempty convex subset of some normed space E. The Picard iterative
process is the following

u0 = u ∈ C

un+1 = Tun . n ∈ N
(2.27)

For the BLUES function method, the ADM and the VIM, the action of the
operator T on un is, respectively

Tun = u0 +B ∗ Run

Tun = −L−1 (un +An)

Tun = un +
∫

ds λ(s)(Lun +Nun − f) .

(2.28)

One can devise other iterative schemes, each of which offers some advantage
over the others in a certain situation. While I will briefly touch upon some
other procedures in this section, they will not be used in this thesis.
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2.5.1 Mann’s iterative procedure

Consider the following single-step procedure:

u0 = u ∈ C

un+1 = (1− αn)un + αnTun , n ∈ N
(2.29)

where {αn} is a sequence of real numbers. This process is called Mann’s
iterative procedure [24]. This is sometimes used to increase the convergence of
the ADM or VIM by considering the αn’s as convergence-control parameters
[25, 26]. These can be optimally determined by minimising the residual square
error of the approximants with respect to the αn in each iteration. This is
numerically expensive but can result in needing less approximants to achieve a
desired accuracy. When αn = α , ∀n ∈ N, the procedure is called Krasnoselskii’s
iterative procedure.

2.5.2 Ishikawa iterative procedure

Consider the following two-step procedure:

u0 = u ∈ C

un+1 = (1− αn)un + αnTvn

vn = (1− βn)un + βnTun , n ∈ N

(2.30)

where {αn} and {βn} are sequences of real numbers. This process is called the
Ishikawa iterative procedure [27]. As was the case for Mann’s procedure, the
parameters αn and βn can be used as convergence-control parameters.

2.5.3 Hybrid procedures

A final procedure can be created by combining Picard’s and Krasnoselskii’s
method. This so-called hybrid Picard-Krasnoselskii’s procedure can be described
as follows,

u0 = u ∈ C

un+1 = Tvn

vn = (1− λ)un + λTun . n ∈ N

(2.31)
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Again, the parameter λ can be used to control the convergence.

The procedures outlined above are especially useful for numerical applications.
Since in this thesis we are interested in purely analytical approximants, we will
not use the other procedures but will defer to the literature on the topic.

2.6 Numerical solution methods

As a result of the fact that many of the equations I will study in this thesis
have no (known) exact solution, the approximants generated by the different
methods in this chapter need to be compared with a numerical solution of the
differential equation at hand. For the chapters on ODEs, PDEs and CDEs I
will use Wolfram Mathematica’s NDSolve function [28]. The NDSolve function
is a generic numerical differential equation solver that can solve both ODEs
and PDEs, either coupled or not. Generally, NDSolve discretizes the domain of
the independent variable, say, a time t, and solves the equation for a sequence
of steps of t, starting from a particular value. It uses an adaptive procedure
to determine the size of the steps, reducing the step size when it detects that
the solutions starts to vary rapidly within a region. Since NDSolve generates
a numerical solution, all initial and boundary conditions must be specified
completely.

For PDEs, the NDSolve function uses the method of lines (MOL) [29] to
discretize all dimensions but one. This allows the techniques that are used
for solving ODEs to be used in the context of PDEs. The true power of the
NDSolve function lies in its adaptivity. When it is allowed to process the
differential equation freely, it selects the method that is most appropriate for
the equation. For example, in “stiff” problems most methods are unstable and
generate rapidly varying solutions. NDSolve can detect this and automatically
uses implicit methods to overcome the stiffness problem.

Given the flexibility and power of the NDSolve command when allowed to
automatically select the best method, I will use this functionality in all of the
previously mentioned chapters to generate the numerical solutions. However,
Mathematica is not capable of solving FDEs. Hence, to generate the solutions
shown in chapter 4, I use Matlab with the fde12 package [30, 31] that uses the
predictor-corrector method of Adams-Bashforth-Moulton [32].



Chapter 3

Ordinary differential
equations

We study the application of the BLUES function method in the setting of
ordinary differential equations (ODEs). Since the construction of the method
for ODEs has been introduced in the previous chapter 2, we will not repeat it
here. We apply the iterative procedure to four examples from theoretical physics
that posses solitonic or travelling wave solutions and calculate approximants
to the (unknown) exact solutions. We analyse numerically the convergence
of the BLUES function method to the exact solution and show that in some
cases the method is able to accurately capture the asymptotic behaviour, hence
converging globally.

This chapter is based on the Letter “Analytic iteration procedure for solitons and
traveling wavefronts with sources” [9] and the article “BLUES iteration applied
to nonlinear ordinary differential equations for wave propagation and heat
transfer” [33], both of which appeared in Journal of Physics A: Mathematical
and Theoretical. It is supplemented with additional calculations and figures.

3.1 Dispersionless Camassa-Holm equation

The dimensionless Camassa-Holm (CH) equation with dispersion parameter
κ ≥ 0

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx, (3.1)

17
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was introduced by Camassa and Holm in 1993 [34] as a model for the surface
height u(x, t) of shallow water waves above a flat bottom. We have implicitly
written partial derivatives with a subscript, i.e. ut = ∂u/∂t. For positive
κ, equation (3.1) results in smooth soliton solutions. However, here we will
consider the limit κ → 0 for which the dispersion vanishes, which is known
to have piecewise analytic solitary wave solutions with a sharp peak where
the first derivative is discontinuous. These peaked solitons were aptly named
“peakons” by Camassa and Holm. The partial DE (3.1) can be converted to
an ordinary DE by adopting a travelling-wave Ansatz U(z) ≡ u(x, t) with
co-moving coordinate z = x− ct, where c is the wave propagation velocity

− cUz + cUzzz + 3UUz − 2UzUzz − UUzzz = 0, (3.2)

and boundary conditions U(|z| → ∞) = 0. We can reduce this third-order DE
to a second-order one by integrating over z,

− c(U − Uzz) + 3
2U

2 − 1
2U

2
z − UUzz = α, (3.3)

where α is an integration constant. Now α = 0 in order to satisfy the boundary
conditions. Introducing a co-moving Dirac-delta point source δ(z) at z = 0 with
amplitude s, the integrated CH equation becomes

NzU(z) = 1
s

(
−c(U(z)− Uzz(z)) + 3

2U
2(z)− 1

2U
2
z (z)− U(z)Uzz(z)

)
= δ(z).

(3.4)

It can easily be seen that this equation admits a peakon solution of the form

U(z) = B(z) ≡ Ae−|z|, (3.5)

whenever the amplitude s of the source, the wave speed c, and the peakon
amplitude A solve the constraint

s = 2A(A− c). (3.6)

From this it immediately follows that s = 0 has two solutions: the trivial
case A = 0 or the case A = c. The latter recovers the peakon solution of the
dispersionless Camassa-Holm equation without point source.

We now derive heuristically a related linear DE which is also solved by (3.5) when
the constraint (3.6) is satisfied. Setting U = A while keeping the derivatives
and neglecting the difference U2 − U2

z , results in the linear DE

LzU(z) = 1
s

(A− c) (U(z)− Uzz(z)) = δ(z), (3.7)



DISPERSIONLESS CAMASSA-HOLM EQUATION 19

where Lz is a linear operator. The peakon solution (3.5) is a Green function
for the linear DE and it can be used to construct an exact solution to the
linear DE with arbitrary source ψ through the convolution B ∗ ψ. Because the
peakon solution solves both the nonlinear DE with a Dirac delta source and an
associated linear DE with the same Dirac delta source, it is a BLUES function
according to the narrow definition given in Chapter 2.

We construct a residual operator RzU ≡ LzU −NzU , which is defined through
its action on U

RzU = 1
s

(
A(U − Uzz)−

3
2U

2 + 1
2U

2
z + UUzz

)
. (3.8)

Note that the residual vanishes when applied to the BLUES function (3.5),
RzB = 0.

We now consider the CH equation (3.4) with an arbitrary source ψ,

NzU(z) = 1
s

(
−c(U(z)− Uzz(z)) + 3

2U
2(z)− 1

2U
2
z (z)− U(z)Uzz(z)

)
= ψ(z)

(3.9)
and the associated linear equation (3.7) with the same source ψ(z),

LzU(z) = 1
s

(A− c) (U(z)− Uzz(z)) = ψ(z). (3.10)

For the source ψ(z) we can, e.g., choose an exponential corner source which
resembles the peakon solution (3.5) but possesses a tuneable dimensionless
decay length K,

ψ(z) = e−|z|/K
2K , (3.11)

and which tends to a Dirac delta function in the limit K → 0. The zeroth-order
approximation (convolution) can be easily calculated for K 6= 1

U
(0)
ψ (z) = (B ∗ ψ)(z) = A

2K

∞∫
−∞

dz0 e−|z−z0|e−|z0|/K

= A

K2 − 1

(
Ke−|z|/K − e−|z|

)
.

(3.12)

The calculation for K = 1 can be done in a similar way and results in the
following simple expression

U
(0)
ψ (z) = A

2 e−|z|(1 + |z|). (3.13)
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To calculate the first-order correction we use the residual operator (3.8) applied
to the zeroth-order approximation, (3.12)

RzU (0)
ψ (z) =

A2 (−3(K + 1)e−2|z|/K + (1 + 2K + 3K2)e−|z|(1+1/K))
2s(K − 1)(K + 1)2 , (3.14)

followed by convoluting this result with the BLUES function (3.5). The
correction, ∆U (1,0)

ψ (z) = U
(1)
ψ (z)− U (0)

ψ (z), becomes for K 6= 1, 2

∆U (1,0)
ψ (z) = − 2A3

s(K2 − 1)

[
3K

2(K2 − 4)

(
Ke−2|z|/K − 2e−|z|

)
+ K

K + 1e−|z|(1+1/K) −Ke−|z|/K
]
,

(3.15)

while for K = 1 and K = 2 the corrections are given respectively by

∆U (1,0)
ψ (z) = U

(1)
ψ (z)− U (0)

ψ (z) = A3

12s

[
(13 + 6|z|)e−2|z| − (8− 12|z|)e−|z|

]
(3.16)

and

∆U (1,0)
ψ (z) = U

(1)
ψ (z)− U (0)

ψ (z) = A3

18s

[
24e−|z|/2 − 8e−3|z|/2 − 9(|z|+ 1)e−|z|

]
.

(3.17)

Higher-order approximants can be calculated in the same way but require the
use of symbolic mathematical software, since they are hard to compute manually.
Using the approximate analytical solutions obtained, we can now compare the
analytical and numerical solution of the equation (3.9). For the source ψ we
choose the previously used normalised exponential corner source (3.11), with, in
this example, a long decay length (K = 10). In Fig. 3.1a, we compare plots of
the zeroth approximant (convolution) U (0)

ψ (z) and the first approximant U (1)
ψ (z)

with the numerical solution Unum(z). Note that there is no need for the source
to be sharp. For values of K in the range 10−3 ≤ K < 103, the convolution
accurately follows the numerical solution and successive higher approximants
improve upon this solution. A zoom about the maximum at z = 0 is show in
Fig. 3.1b.

Note that the iteration sequence converges to the BLUES function (3.5) for a
sharply localized source, i.e., in the limit K → 0 for the corner source. In this
limit, the zeroth approximant converges to the BLUES function and all higher
corrections vanish.
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Figure 3.1: (a) Soliton solution to the nonlinear Camassa-Holm DE (3.9) with
the exponential corner source (3.11). The numerical solution Unum(z) (red,
full line), the zeroth approximant U (0)

ψ (z) (black, dashed line) and the first
approximant U (1)

ψ (z) (black, wider spaced dashed line) are compared. Also
shown is the BLUES function B(z) (grey, dotted line). Parameter values are
c = −5/2, A = 1/2, and K = 10 (broad source). (b) A zoomed-in view around
the maximum of U(z). The approximations are shown up to and including 3rd
iteration. On this scale U (3)

ψ (z) is on top of the numerical solution.
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The residual function RzU (n)
ψ (z) for arbitrary iteration n can be computed as

was done in equation (3.14) for n = 0. These functions for different iterations
are compared in Fig. 3.2, where the residual operator applied to the numerically
exact solution Unum(z) is also shown. Note that for the CH equation, the higher
residuals are all localised and vanish at positive and negative infinity, ensuring
the boundedness of the general solution.

RzUnum

RzUψ
(0)

RzUψ
(1)

RzUψ
(2)

-6 -4 -2 0 2 4 6

z

0.002

0.004

0.006

0.008

RzUψ

Figure 3.2: Residual functionsRzU (n)
ψ (z) of the n-th order approximants U (n)

ψ (z)
for the nonlinear Camassa-Holm DE with exponential corner source (3.11) for
n = 0, 1 and 2. Also shown is the residual in the numerically exact solution
Unum(z) (red, full line). Parameter values are c = −5/2, A = 1/2, and K = 10.

By numerically inspecting the values of the terms in the iteration sequence at
the maximum in z = 0 for increasing order n, we can gain some insight into the
convergence of the sequence. By inspecting Figs 3.1b and 3.3, we observe that the
maximum of the different approximants converges to the numerically determined
maximum. When the difference of subsequent approximants |∆U (n,n−1)

ψ (0)| ≡
|U (n)
ψ (0)−U (n−1)

ψ (0)| is studied, we see that this difference decays exponentially
to zero, numerically indicating that the sequence converges exponentially fast.
Note that this is also the case when studying the convergence of the residual
function RzU (n)

ψ (z) to the numerically exact solution RzUnum(z).
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Figure 3.3: Peak value of the approximants U (n)
ψ (0) versus order n for the

nonlinear Camassa-Holm DE. The numerically exact peak value (red, dashed
line) is also shown. Inset: A log10 semi-log plot of the increments |∆U (n,n−1)

ψ (0)|
of the approximants versus n, and a linear fit. Parameter values are c = −5/2,
A = 1/2, and K = 10.

3.2 The Burgers equation

As a starting point for our second example, consider the diffusion equation
which describes the propagation of a density u(x, t)

ut − νuxx = 0, (3.18)

with ν the diffusion coefficient. After scaling the variables and adopting a
travelling-wave Ansatz z = x − ct, the diffusion equation becomes a linear
ordinary DE. Adding a co-moving Dirac delta source, the equation becomes

LzU(z) ≡ −Uz(z)− kUzz(z) = δ(z), (3.19)

where k is a dimensionless constant. We consider the wavefront boundary
conditions Uz(z → −∞) = 0 (and U(z → −∞) > 0) and U(z → ∞) = 0.
The exact solution (in every point including z = 0) is the piecewise analytic
exponential tail,

B(z) =
{

1, z < 0
e−z/k, z ≥ 0

(3.20)

and the wavefront velocity is c(k) = 1/k. We can now include an arbitrary kind
of nonlinearity to the equation, say, a nonlinear convective term uux, which
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turns the diffusion equation into the well-known viscous Burgers equation [35]

ut + uux − ν uxx = 0, (3.21)

which is widely used in, e.g., fluid mechanics [36], nonlinear acoustics, traffic
flow modelling, etc. By again transforming to the co-moving frame and adding
a source ψ(z), equation (3.21) can be rewritten as

NzU(z) ≡ −Uz(z) + kU(z)Uz(z)− kUzz(z) = ψ(z), (3.22)

which is compatible with our boundary conditions provided 0 < k < 1/2, as can
be seen by applying a sum rule (see further). Once again, we can try to solve
this equation by making use of superposition based on B(z). However, the main
difference with the previous problem (CH soliton) is that now the piecewise
analytic solution (3.20) does not solve (3.22) for a point source because the
nonlinear term does not vanish at z > 0 and is not compensated at z = 0.
Surprisingly, this does not spoil the method because it turns out that the
condition (2.1) is not necessary. Therefore we can still use the B(z) defined in
equation (3.20) as a BLUES function and investigate the iteration sequence even
though this B(z) is not a BLUES function according to the narrow definition of
Chapter 2. The residual of the diffusion equation with respect to the Burgers
equation is

RzU = −kUUz (3.23)
and now the residual is nonzero when applied to the BLUES function, RzB(z) 6=
0. Consequently, when the source in the nonlinear DE is taken to be a Dirac
delta source, the sequence converges to a new function which is different from
the BLUES function and which can be calculated as follows, to arbitrary order,

B ∗ φ ∼ B +B ∗ Rz(B +B ∗ Rz(B +B ∗ Rz(B + ...))). (3.24)

For an arbitrary source ψ, the zeroth approximant is B ∗ ψ. Choosing again
the exponential corner source (3.11), we obtain for K 6= k

U
(0)
ψ (z) ≡ (B ∗ ψ)(z) = 1

2

{
2− K

K+k ez/K , z < 0
K

K−k e−z/K − 2k2

K2−k2 e−z/k z ≥ 0,
(3.25)

while for K = k the convolution product results in

U
(0)
ψ (z) ≡ (B ∗ ψ)(z) =

{
1− ez/k

4 , z < 0( 3
4 + z

2k
)

e−z/k z ≥ 0.
(3.26)

The method for finding higher solutions is straightforward but tedious. A
calculation for the first approximant (A.3) is performed in the appendix A.
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This time we illustrate our results for the choice of a sharp source with K/k =
1/5. We compare the approximate solutions calculated using the sequence with
the numerically exact solution. In Fig. 3.4a, the zeroth (short dashed line)
and the first approximant (long dashed line) are compared with the numerical
solution (red full line). Note that the zeroth solution (the simple convolution)
approaches unity for z → −∞ but that the numerical solution approaches a
different constant value. This value can easily be found through a sum rule,
obtained by integrating the full Burgers equation (3.22) with source ψ over the
real line and solving for Uψ(−∞), resulting in the quadratic equation

k

2U
2
ψ(−∞)− Uψ(−∞) + α = 0, (3.27)

with solutions Uψ(−∞)± = (1 ±
√

1− 2kα)/k and where α is the integral of
the source over the real line, called the 1-norm of the source. For k = 1/3
and the source normalised to unity α = 1, the asymptotic constant for our
solution is Uψ(−∞)− = 1.268... Higher iterations are shown in Fig. 3.4b,
where a zoomed-in view around z = 0 reveals the convergence of the sequence.
This is numerically confirmed in Fig. 3.6 where once again the convergence is
exponentially fast. We can also study the higher residual functions RzU (n)

ψ and
confirm that the convergence to RzUnum is exponentially fast. Again, in every
iteration the residuals are localised and vanish at positive and negative infinity,
ensuring the boundedness of the general solution.

Note that the source need not be normalised to unity. The method also works
for sources whose 1-norm is another real number, for instance zero. In Fig. 3.7a
the solution to equation (3.22) is shown for a source ψ, which is an odd function
of z

ψ(z) = A sin
( z
K

)e−|z|/K
2K , (3.28)

with A > 0. This choice of ψ(z) has the interpretation of a sink for negative
values of z, smoothly connected to a source for positive values of z. Since the
source is odd, the 1-norm is zero and the solution at negative infinity, predicted
by the sum rule (3.27), is Uψ(−∞) = 0, which is confirmed by the numerical
solution shown in Fig. 3.7a, for A = 10.

The zeroth solution of Burgers’ equation (3.22) with the smooth sink/source
combination (3.28) is given by

U
(0)
ψ (z) = AK

4


(

(2k+K) cos z
K−K sin z

K

2k2+2kK+K2

)
ez/K , z < 0(

(K−2k) cos z
K+K sin z

K

2k2−2kK+K2

)
e−z/K + 8k3

4k4+K4 e−z/k, z ≥ 0,
(3.29)
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Figure 3.4: (a) Travelling wavefront solution to the nonlinear Burgers DE (3.22)
with an exponential corner source (3.11). The numerical solution Unum(z) (red,
full line), the zeroth approximant U (0)

ψ (z) (black, dashed line) and the first
approximant U (1)

ψ (z) (black, wider spaced dashed line) are compared. The
BLUES function (grey) is also shown. (b) A zoomed-in view around the
shoulder of the wavefront. The approximants are shown up to and including
3rd iteration. Parameter values are k = 1/3 and K/k = 1/5 (sharp source).
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Figure 3.5: Residual function RzU (n)
ψ (z) of the approximants n = 0, 1, 2, 3 for

the nonlinear Burgers DE (3.22) with exponential corner source (3.11). The
residual operator applied to the numerical solution (red, full line) and to the
BLUES function (grey, dotted line) are also shown. The latter is zero for z < 0.
Parameter values are k = 1/3 and K/k = 1/5.
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Figure 3.6: Wavefront values U (n)
ψ (0) versus iteration n for the nonlinear Burgers

DE. The numerically exact value (red, dashed line) is also shown. Inset: A
log10 semi-log plot of the increments |∆U (n,n−1)

ψ (0)| of the approximants versus
n, and a linear fit. Parameter values are k = 1/3 and K/k = 1/5.
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which decays to zero at negative infinity. Note that the solution now has the
shape of a travelling pulse or soliton, in contrast with the kink solution of the
model with the exponential corner source (3.11). By changing the functional
form of the source, one can control the shape of the solution. Note that the
BLUES function is independent of the choice of the source, and is the same
as for the travelling wave solution studied earlier. The convergence to the
numerically exact solution is again exponentially fast, as is shown in detail in
the zoom of the region around the maximum, see Fig. 3.7b. This can also be
inferred by inspection of the residual functions RzU (n)

ψ (z) shown in Fig. 3.8.
The exponential convergence is illustrated quantitatively in Fig. 3.9.

3.3 The damped nonlinear oscillator

We now start from a general linear wave equation in one dimension with a
co-moving Dirac delta source with amplitude s

utt − uxx + γux + u = s δ(x− ct) (3.30)

and look for travelling wave solutions by once more transforming to the
coordinate z = x− ct

αUzz(z) + γUz(z) + U(z) = s δ(z), (3.31)

where α = c2 − 1. It can easily be seen that this DE is solved by the Green
function

B(z) ≡
{

0 z < 0
sin
(
λz
2α
)
e− γz2α z ≥ 0,

(3.32)

with λ =
√

4α− γ2 and source amplitude s = λ/2. Now an arbitrary nonlinear
term can be added, which we choose to be the cubic-quintic function βU3 +ξU5,
where β and ξ are tuneable parameters. Altogether the nonlinear wave equation
with an arbitrary source is

αUzz(z) + γUz(z) + U(z) + βU3(z) + ξU5(z) = sψ(z), (3.33)

where again the amplitude is s = λ/2 and the 1-norm of the source ψ(z) is
unity. This DE is a basic model for a myriad of physical systems. When β and
ξ are chosen to be −1/3! and 1/5! respectively, the terms U +βU3 + ξU5 can be
interpreted as the first three nonzero terms in the sine Taylor series. Including
higher-order terms in the series, one can construct the nonlinear DE

αUzz(z) + γUz(z) + sinU(z) = sψ(z), (3.34)
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Figure 3.7: (a) Travelling pulse solution to the nonlinear Burgers DE (3.22)
with source (3.28). The numerical solution Unum (red, full line), the zeroth
U

(0)
ψ (black, dashed line) and the first approximants U (1)

ψ (black, wider spaced
dashed line) are compared. The BLUES function B(z) is also shown (grey,
dotted line).(b) A zoomed-in view around the maximum of the pulse. The
approximants are shown up to and including 2nd iteration. Parameter values
are k = 1/3, K/k = 1/3 and A = 10.
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ψ (0.2) versus iteration n for (3.22). The numerically
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which is an equation for the damped and driven Sine-Gordon model [37], often
used to describe the dynamics of Josephson junctions in superconductors [38, 39].
Another important application of equation (3.33) is the cubic-quintic Duffing
oscillator, which is used to describe damped harmonic motion in a nontrivial
potential and has become a paradigm for the study of chaos. For computational
purposes we will only include the terms in the sine Taylor series up to and
including third order, so we will choose ξ = 0.

Once more following the procedure outlined in Section 2.1, we construct the
residual operator RzU as (with ξ = 0)

RzU ≡ −
β

s
U3 (3.35)

and use this to calculate higher approximants using the Green function B(z)
given in (3.32) as BLUES function in the iteration sequence (6.53). The zeroth
approximant can be calculated by performing the convolution integral (6.54)
with BLUES function (3.32) and normalised exponential corner source (3.11),
resulting in

(B ∗ ψ)(z) =
{

Kλ
4C+

ez/K z < 0[
A sin

(
λz
2α
)
−Bλ cos

(
λz
2α
)] e−

γz
2α
2 + Kλ

4C− e−z/K z ≥ 0,
(3.36)

where the constants A,B,C± are introduced to simplify notation. They are
given by combinations of α, γ and K:

A = 2α2 −K2γ2 + 2αK2

α2 −K2γ2 + 2αK2 +K4

B = K2γ

α2 −K2γ2 + 2αK2 +K4

C± = α±Kγ +K2.

(3.37)

Higher iterations can in principle be calculated using equation (6.53) but in
practice this is not feasible without the aid of mathematical software.

In Fig. 3.10a, a comparison between the numerically exact solution and both
the zeroth approximant and the first approximant is made. On this scale the
first approximant is globally better. While the first approximant is already
useful, the second is shown to be a significantly better approximation. In Fig.
3.10b a zoomed-in view around the first minimum of the wave shows that the
zeroth and first approximants intersect at some point, indicating that locally
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the zeroth approximant is a better approximation. On this scale the second
approximant is on top of the numerically exact solution. Once more we analyse
the convergence of the iteration sequence to the exact solution. In Fig. 3.12 the
value of the approximants at z = 2 for iterations n = 0, 1 and 2 are shown. The
inset shows that the convergence to the exact solution is again exponentially
fast. The higher residual functions are shown in Fig. 3.11 together with the
residual operator (3.35) applied to the numerically exact solution (red, full line).
Note that the residual functions are negative in the domain around the global
maximum of the exact solution U(z), where U > 0, that they are zero (with a
cubic dependence on z) where the curves of Fig. 3.11 change sign, and that they
are positive in the domain around their first minimum, where U < 0, indicating
that higher corrections have respectively negative and positive sign relative
to the zeroth approximant. This is obvious in view of the simple form of the
residual (3.35).

In the limit K → 0, the chosen source converges to the Dirac delta source used
to calculate the BLUES function (3.32). Because the BLUES function does not
solve (3.33), the sequence converges (exponentially fast) to a nontrivial function.
One can calculate the first terms in this expansion by setting ψ(z) = δ(z) in
equations (6.54) and (6.53). To zeroth iteration, the convolution is identical
to the BLUES function. To first iteration, the solution with a delta function
source is given by

U
(1)
δ (z) = B(z)− β

s

∞∫
−∞

B(z − z0)B(z0)3dz0. (3.38)
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Figure 3.10: (a) Travelling wave solution to the nonlinear wave equation (3.33)
with an exponential corner source (3.11). The numerical solution Unum(z)
(red, full line), the zeroth U

(0)
ψ (z) (black, dashed line), first U (1)

ψ (z) (black,
wider spaced dashed line) and the second U

(2)
ψ (z) (black, dot-dashed line)

approximants are compared. The BLUES function (grey, solid line) is also
shown. (b) A zoomed-in view around the global minimum of the wave. The
approximants are shown up to and including 2nd iteration. Parameter values
are α = 2, γ = 1, β = 1, ξ = 0 and K = 1/2.
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3.4 The Fisher equation

For this final example, we choose once more the diffusion equation (3.19) to be
the linear operator and add a reaction-type nonlinearity and a source ψ(z) to
obtain the forced Fisher equation [40] in co-moving coordinates, i.e.,

NzU(z) = −Uz(z)− kUzz(z)− kU(z)(1− U(z)) = ψ(z) , (3.39)

with boundary conditions U(z → ∞) → 0 and U(z → −∞) → 1. Equation
(3.39) governs the dimensionless density of some chemical or species experiencing
diffusion and growth. The limit at negative infinity signifies the saturation of
the density at the normalised value 1. The residual operator is now

RzU = kU(1− U) (3.40)

From the linear operator (3.19), the BLUES function is once again the
exponential tail function (3.20). If we now choose the source ψ(z) to be
the exponential corner source (3.11), the zeroth approximant to the nonlinear
DE (3.39) is again either equation (3.25) or (3.26), which we will repeat here
for K 6= k

U
(0)
ψ (z) ≡ (B ∗ ψ)(z) = 1

2

{
2− K

K+k ez/K , z < 0
K

K−k e−z/K − 2k2

K2−k2 e−z/k z ≥ 0,
(3.41)

while for K = k the convolution product results in

U
(0)
ψ (z) ≡ (B ∗ ψ)(z) =

{
1− ez/k

4 , z < 0( 3
4 + z

2k
)

e−z/k z ≥ 0.
(3.42)

Higher approximants can easily be calculated by iteration but will not be given
here. We will, however, calculate the first approximant for k 6= K in the
appendix A.2. Note that the first approximant approaches a constant which
is not unity at negative infinity and consequently does not obey the boundary
condition. One can calculate the non-trivial constant by considering the limit
of the first approximant at negative infinity, i.e.,

Uc ≡ lim
z→−∞

U (1)(z) = 1 + lim
z→−∞

∞∫
−∞

B(z − z′)Rz′U (0)
ψ (z′)dz′

= 1 +
∞∫
−∞

Rz′U (0)
ψ (z′)dz′

= 1 +
k
(
2k3 + 4k2K + 6kK2 + 3K3)

4(k +K)2 .

(3.43)
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In Fig. 3.13a, the zeroth and first approximants are shown together with the
numerically exact solution and the BLUES function (3.20). In Fig. 3.13b,
a zoomed-in representation of the shoulder of the wavefront is shown. The
numerical solution is compared with approximants up to fourth iteration. Note
that while all approximants obey the boundary condition U(z →∞)→ 0, only
the zeroth approximant approaches unity for z → −∞. This is a consequence
of the lack of localization of the residual for higher iterations. This is shown in
Fig. 3.14. The numerical residual function RzUnum(z) and the zeroth residual
function are localized, but higher residual functions are not anymore. This
corresponds to a divergence of the approximants of higher iterations.

The local convergence of the approximants can once more be assessed by studying
the value of the approximants for a fixed value of z. However, because of the
divergence of the approximants for z → −∞, one has to be careful in choosing
the value of z. In this case, we have chosen for z = −1, which can be seen to
lie within a reasonable region of convergence. The results are shown in Fig.
3.15. Note that within the region of convergence, the approximants converge
exponentially fast to the numerically exact solution.

In this chapter we have shown that the BLUES function method can be used to
calculate accurate approximations for various nonlinear ODEs, particularly for
travelling-wave solutions to one-dimensional problems within fluid dynamics and
mathematical biology, where the source is co-moving. We will now study the
application of the BLUES function method for fractional differential equations
in one variable.
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Figure 3.13: (a) Travelling wavefront solution to the nonlinear Fisher DE (3.22)
with an exponential corner source (3.11). The numerical solution Unum(z) (red,
full line), the zeroth U (0)

ψ (z) (black, dashed line) and the first U (1)
ψ (z) (black,

wider spaced dashed line) approximants are compared. The BLUES function
(grey) is also shown. (b) A zoomed-in view around the shoulder of the wavefront.
The approximants are shown up to and including 4th iteration. Parameter
values are k = 1/4 and K/k = 1/2.
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Chapter 4

Fractional differential
equations

We briefly elucidate the BLUES function method for the case in which the order
of the derivatives can take any value in the set of real numbers. This is called a
fractional differential equation (FDE). We study a particular FDE originating
in the study of the heat transfer of a semi-infinite rod with Stefan-Boltzmann
cooling and perform a comparison with the ADM.

This chapter is based on the article “BLUES iteration applied to nonlinear
ordinary differential equations for wave propagation and heat transfer” [33],
which appeared in Journal of Physics A: Mathematical and Theoretical.

4.1 Fractional heat transfer equation

In this section we consider the following nonlinear fractional differential equation
(FDE) defined on the semi-infinite real line t ∈ (0,∞) with differential order
0 < α ≤ 1 and exponent n ≥ 1 and with initial condition U(0) = C0, where
C0 ≥ 0,

NtU(t) = Dα
t U(t) + Un(t) = ψ(t) , (4.1)

39
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where Dα
t is the Riemann- Liouville fractional derivative defined as follows, for

α > 0 and t > 0

Dα
t f(t) ≡


1

Γ(m− α)
dm

dtm

∫ t

0

f(τ)
(t− τ)α+1−m dτ m− 1 < α < m ∈ N

dm

dtm
f(t) α = m ∈ N

(4.2)

where Γ(.) is the gamma function. This equation has previously been studied in
the context of nonlinear heat transfer for the case α = 1/2, C0 = 0 and n = 4
(Stefan-Boltzmann cooling) [41, 42]. The calculations that follow are valid for
all values of 0 < α ≤ 1 and n ≥ 1. It has been shown that if ψ(t) is a piecewise
continuous bounded function, equation (4.1) is guaranteed to have a unique
solution. If ψ(t) is nondecreasing in an interval 0 < t < s, s ∈ (0,∞) then the
solution is also nondecreasing in that interval [43, 44]. Note that the differential
order can in principle be higher than α = 1. One can then separate the order
α = m+ β in an integer part m ∈ N corresponding to a regular integer-order
differential operator, and a fractional part 0 < β ≤ 1 which again corresponds
to a fractional differential operator. The FDE (4.1) should consequently be
supplemented with additional boundary conditions up to a number m+ 1. In
the remainder of this chapter, we will assume 0 < α ≤ 1.

Following the steps in the BLUES procedure outlined in Section 2.1, we
now choose the associated linear differential equation by simply dropping the
nonlinear Un(t) term. Once again we write the resulting FDE in operator form

LtU(t) = Dα
t U(t) = ψ(t) , (4.3)

with the initial condition chosen to be U(0) = 0. The Green function for
equation (4.3) can now be calculated by considering a Dirac delta function
source instead of ψ(t)

Dα
t G(t, t′) = δ(t− t′) , (4.4)

where t− t′ > 0 because the problem is formulated on the semi-infinite real line.
This Green function is readily calculated to be

G(t, t′) = (t− t′)α−1

Γ(α) (4.5)

Consequently the solution of the linear FDE (4.3) is the convolution integral of
the Green function (4.5) and the source ψ(t), which we will choose from now on
to be the constant function ψ(t) = 1 for t ≥ 0, as was done in references [42, 41]

U (0)(t) =
t∫

0

G(t, t′)ψ(t′)dt′ = 1
Γ(α)

t∫
0

(t− t′)α−1dt′ = tα

αΓ(α) (4.6)
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It is worth emphasising that this application to heat transfer is fundamentally
different from the previously considered ones in that the source is not assumed
to be originating from a disturbance that is “co-moving” with the solution. The
variable here is time and not a co-moving coordinate, and the source arises as a
natural physical ingredient of the problem. Therefore this example constitutes
a non-trivial extension of the domain of applicability of the method not only in
the type of DE (from DE to FDE) but also in the character and interpretation
of the source term in the DE.

The residual operator is the difference between the linear FDE (4.3) and the
nonlinear FDE (4.1) and is defined by the action on U(t), i.e.,

RtU = LtU −NtU = −Un (4.7)

Now the p−th approximant to equation (4.1) can be calculated by using the
BLUES iteration sequence (6.53)

U (p)(t) = U (0)(t) +
t∫

0

G(t, t′)Rt′U (p−1)(t′)dt′ (4.8)

The first approximant to the nonlinear problem can easily be calculated using
(4.5), (4.6) and the iteration sequence definition (4.8), with the choice n = 4,

U (1)(t) = U (0)(t)−
t∫

0

(t− t′)α−1

Γ(α)
t′4α

α4Γ4(α)dt′

= 1
αΓ(α) t

α − Γ(1 + 4α)
α4Γ4(α)Γ(1 + 5α) t

5α

(4.9)

One can now iterate (4.8) to generate higher approximants to the solution of the
nonlinear FDE (4.1). In Fig. 4.1 and Fig. 4.2, the approximants for different
values of α are compared with the numerically exact solution.

For the choice α = 1/2, equation (4.1) is associated with the heat transfer
equations for a semi-infinite solid [44] with external heating ψ(t) and either
linear Newton cooling when n = 1 or nonlinear Stefan-Boltzmann cooling when
n = 4. In [44], it was shown that if the condition

∞∫
0

ψ(t′)dt′ <∞ (4.10)

is fulfilled, for n ≥ 3, some of the energy entering the solid will persist, while for
n ≤ 2, all energy is eventually radiated away. For the remainder of this work,
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we will use the nonlinear Stefan-Boltzmann cooling n = 4. The zeroth-, first-,
and second approximants for α = 1/2 and n = 4 are, respectively, given by

U (0)(t) = 2
(
t

π

)1/2

U (1)(t) = 2
(
t

π

)1/2
− 256

15

(
t

π

)5/2

U (2)(t) = 2
(
t

π

)1/2
− 256

15

(
t

π

)5/2
+ 2097152

4725

(
t

π

)9/2

− 1073741824
225225

(
t

π

)13/2
+ 8796093022208

369208125

(
t

π

)17/2

− 2251799813685248
49104680625

(
t

π

)21/2

(4.11)

The approximants obtained by the BLUES function method can be compared to
those obtained with the Adomian decomposition method (ADM). This is shown
in Fig. 4.3, where the 21st-order approximant for the ADM is shown versus the
5th approximant for the BLUES function method and the numerically exact
solution.

The number of nonzero terms g(i, n) for the approximant of iteration i ∈ N
generated by the BLUES function method can be calculated exactly for a general
nonlinearity exponent n ∈ N, n ≥ 1, i.e.,

g(i, n) =
{

1
n−1

(
n− 2 + ni

)
n ≥ 2

i+ 1 n = 1
(4.12)

so for n = 4, the 4th approximant contains g(4, 4) = 86 nonzero terms. Note
that the number of terms increases exponentially with the iteration number. In
comparison, the ADM generates a series with a number of terms which grows
linearly with the order of approximation. Note that the ADM generates the exact
coefficients in a series representation of the solution while the BLUES function
method generates many more terms but the coefficients are not necessarily
already saturated to their exact value. One can say that the BLUES method
generates, in each iteration, a (huge) number of scout terms that probe the
emerging series expansion and gradually gain precision. The coefficients in
the BLUES function method saturate roughly linearly with increasing order
of approximation, as can be seen when keeping track of the coefficient a17 of
the t17/2 term. This is first generated in the second approximant U (2) with
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a value of a17 = 1.41659. In the third approximant the value increases to
a17 = 19.8026 and eventually saturates in the fourth approximant, attaining its
exact value a17 = 30.8436, which is the same coefficient as was found with the
ADM. The same comparison can be applied to the coefficient a21 of the t21/2

term. This term is again generated in the second approximant with a value
of a21 = −0.27627 and increases in absolute value to a21 = −40.9762 in the
third iteration, then to a21 = −99.0372 in the fourth iteration and eventually
saturates at a21 = −118.387 in the fifth iteration, which is the exact result as
found by the ADM.

The higher residual functions are shown in Fig. 4.4 together with the residual
operator (4.7) applied to the numerically exact solution (red, full line). Note
that for this model the residuals are not localized, in contrast to all previous
examples. The approximants to the solution of equation (4.1) do not converge
to the correct numerical value at t → ∞ precisely because of the divergence
of the residual in every iteration. While the approximants diverge for larger
values of t, a radius of convergence can still be identified.

With this example we close the discussion on ODEs (regular or fractional) and
continue by studying the BLUES function method for PDEs.
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Figure 4.1: Solution to the nonlinear FDE (4.1) with constant source ψ(t) = 1
and fractional order (a) α = 1/4 and (b) α = 1/2. The numerical solution (red,
full line) is compared with the approximants up to fourth iteration (black/gray
lines).
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Figure 4.2: Solution to the nonlinear FDE (4.1) with constant source ψ(t) = 1
and fractional order (a) α = 3/4 and (b) α = 1. The numerical solution (red,
full line) is compared with the approximants up to fourth iteration (black/gray
lines).
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Figure 4.3: Comparison between the 21st iteration of the ADM (dotted line) and
the fourth iteration of the BLUES function method (dashed line) for α = 1/2
and n = 4. The numerically exact solution (red, full line) is also shown.
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Figure 4.4: Residual RtU(t) = −U4(t) with α = 1/2 for different iterations.
The numerically exact residual RtUnum is also shown (red, full line).



Chapter 5

Partial differential equations

The goal of this chapter is twofold. First we establish the BLUES function
method for partial differential equations (PDEs). Second we show that in
some cases the BLUES function method outperforms some well-established
methods, while in other cases it produces a solution which converges more
slowly to the exact solution than other methods. This will first be illustrated
for four relatively simple test cases and then the BLUES function method is
used to investigate a minimalistic model for the evolution of an interface height
profile. In this work, we will compare the BLUES function method to four
other established methods: the variational iteration method (VIM) [19], the
VIM with Green function (GVIM) [22], the Adomian decomposition method
(ADM) [10, 11] and the homotopy perturbation method (HPM) [23]. A brief
outline of each of the aforementioned methods can be found in chapter 2.

The setup of this chapter is as follows. In Section 5.1 we will extend the BLUES
function method initially described for ODEs in [33, 9, 7] to the arena of partial
differential equations. In Sections 5.2, 5.3 and 5.4 we study three simple exactly
solvable PDEs and compare the different methods. Next, in Section 5.5 we set
the stage for the following section by applying the BLUES function method
to a general power-law convective nonlinearity which we consequently use in
Section 5.6 to study a minimalistic model for the evolution of interfaces under
the combined effects of shear and growth.

This chapter is based on the article “The BLUES function method applied to
partial differential equations and analytic approximants for interface growth
under shear” [45], which was accepted for publication in Physical Review
Research.

47
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5.1 The BLUES function method for a nonlinear
PDE

Here we extend the BLUES iteration method originally developed for ODEs
[7, 9, 33] to PDEs in time and one space variable. The crucial role of the extrinsic
source (or sink) term in the context of the ODE will now be taken over, simply,
by the intrinsic initial condition of the solution of the PDE. Consequently, the
extension of the method to PDEs entails a conceptual simplification rather than
complication, and allows one to increase substantially the range of (physics)
problems that can be tackled.

Let us start from a linear PDE which can be written as an operator Lt,x acting
on a function u(x, t), say a density subject to diffusion, and let us attempt to
solve

Lt,x u(x, t) = 0, for t > 0, (5.1)
with initial condition

u(x, 0) = f(x). (5.2)
Since the problem is linear the solution u(x, t) can be written as the convolution
G∗f of the initial condition f(x) with the Green function G(x, t), which satisfies

Lt,xG(x, t) = 0, for t > 0, (5.3)

while meeting the initial condition

limt→0G(x, t) = δ(x) . (5.4)

The solution to the linear problem is the (single-variable) convolution, which
reads

u(x, t) =
∫
R
dx′G(x− x′, t)f(x′). (5.5)

For simplicity we restrict our attention to PDEs that involve only the first
derivative w.r.t. to time, specifically Lt,x u = ut + L̃xu, with ut ≡ ∂u/∂t and
L̃x a time-independent linear operator. For our purposes, it is convenient to
rewrite the PDE by invoking the initial condition f(x) through the action of a
Dirac-delta source in time. The following time and space integral, which is a
two-variable convolution u(x, t) = G ∗ f δ, solves the rearranged inhomogeneous
linear PDE, which is equivalent to the original linear PDE,

Lt,x u(x, t) = Lt,x
∫ t

0−
dt′
∫
R
dx′G(x− x′, t− t′)f(x′)δ(t′) = f(x)δ(t) . (5.6)

This identity holds by virtue of the fact that Lt,x contains only a first derivative
w.r.t. time t. This derivative generates two terms. The boundary term (the



THE BLUES FUNCTION METHOD FOR A NONLINEAR PDE 49

value of the integrand at t′ = t) exactly produces the right-hand-side of (5.6),
in view of (5.4). The second term is contained in the action of Lt,x , when it is
moved inside the integral over t′. That action is a contribution that vanishes
for all t′ < t in view of (5.3). Moreover, for all t′ > 0, including t′ = t, the
contribution is zero in view of the vanishing of the factor δ(t′) present in the
integrand. It remains to be checked that the presence of δ(t′) does not spoil
our conclusion in the vicinity of t′ = 0. There we pick up a finite contribution
from

∫ 0+

0− dt
′ δ(t′) = 1 but it is multiplied by zero in view of (5.3). We conclude

that G ∗ f δ solves the PDE for all t > 0.

The initial condition is retrieved by examining carefully the limit t→ 0. Firstly,
the solution u(x, t) as given by the time and space integral G ∗ f δ obviously
vanishes for t < 0− by definition, so u(x, t < 0) = 0. However, this solution
“jumps” to the initial condition function f(x) at t = 0+ through the action of
δ(t′) and by the fact that the Green function becomes a spatial Dirac-delta in
view of (5.4). The space integral then produces f(x). For t > 0 the solution
evolves, in a continuous manner, from this initial condition.

Using this representation of the PDE, which naturally features an intrinsic
source term expressing the initial condition, we can now generalize the BLUES
iteration procedure from nonlinear ODEs to nonlinear PDEs. One may add a
nonlinearity rather freely to the PDE, while preserving the simple form of the
time-dependent part,

Nt,x u = ut + Ñxu, (5.7)
with Ñx a time-independent nonlinear operator, and arrive at the nonlinear
PDE

Nt,x u(x, t) = 0, (5.8)
with initial condition, as before,

u(x, 0) = f(x). (5.9)

The BLUES function method now proposes to construct a solution u(x, t) to
the equivalent inhomogeneous PDE in the form of a two-variable convolution
u(x, t) = B ∗ φ, so that

Nt,x u(x, t) = Nt,x
∫ t

0−
dt′
∫
R
dx′B(x− x′, t− t′)φ(x′, t′) = f(x)δ(t). (5.10)

Clearly, this PDE coincides with the original nonlinear PDE (5.8) for t > 0 and
we will shortly examine its behavior at t = 0. The function B(x, t) is called
BLUES function and it is taken to be the Green function of an arbitrary but
conveniently chosen linear operator Lt,x related to Nt,x . The challenge is to
calculate the new associated source φ(x, t) knowing that B ∗ fδ solves the linear
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PDE (5.6) with initial condition f(x) and source term fδ. Note that φ(x, t)
need not be separable and in general it is not.

The initial condition is generated correctly, since, by definition, u(x, t < 0) = 0
and subsequently u(x, t = 0+) = f(x), provided three conditions are fulfilled.
The first is that Nt,x u = 0, for u = 0. The second condition is that the
associated source φ decomposes as follows into a separable singular term and a
(non-separable) smooth term ζ, which is to be calculated analytically: φ(x, t) =
f(x)δ(t) + ζ(x, t), with

∫ 0+

0− dt ζ(x, t) = 0. The third condition is that for all
finite x the function Ñxf(x) be finite. For nonlinear operators these are not
obvious and must be checked.

For this calculation one defines a (time-independent) residual operator Rx ≡
Lt,x −Nt,x and makes use of the implicit identity

Nt,x (B ∗ φ)(x, t) = φ(x, t)−Rx (B ∗ φ)(x, t) = f(x)δ(t), (5.11)

which follows directly from the Green function property of B w.r.t. the chosen
linear PDE.

To obtain the solution to the nonlinear PDE (5.8) with initial condition (5.9),
equation (5.11) can be rewritten and iterated,

φ(x, t) = f(x)δ(t) +Rx (B ∗ φ)(x, t), (5.12)

in order to calculate an approximation in the form of a sequence in powers of
the residual Rx . In zeroth iteration,

φ(0)(x, t) = f(x)δ(t), (5.13)

and in nth iteration (n ≥ 1),

φ(n)(x, t) = f(x)δ(t) +Rx (B ∗ φ(n−1))(x, t). (5.14)

Consequently, the nth analytical approximant to the solution of the nonlinear
PDE is found through the two-variable convolution

u(n)(x, t) =
(
B ∗ φ(n)

)
(x, t) = u(0)(x, t) + (B ∗ Rx u(n−1))(x, t). (5.15)

5.2 Reaction-diffusion-convection equation

Let us start with a simple example, in which the convolutions are all of
single variable type. Unless otherwise stated the functions, variables and
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parameters are reduced (dimensionless). Consider the nonlinear reaction-
diffusion-convection PDE [46] which can be used to describe, e.g., the
propagation of a chemical of density u through the combined mechanisms
of diffusion, nonlinear convection and reaction, with a ∈ R,

Nt,x u = ut − uxx + uux + u(u+ a) = 0 , (5.16)

defined on (x, t) ∈ R× [0,∞) with an exponential initial condition, i.e.,

u(x, 0) = f(x) = e−x . (5.17)

This unbounded initial condition is rather unphysical but will serve as an ideal
testbed for the comparison of the different approximation methods, as in this
case a simple exact solution of (5.16) can be found. We will now consider the
methods mentioned in Chapter 2 and compare their results. The ADM, HPM
and VIM all produce the following sequence of approximants:

u(0)(x, t) = e−x

u(1)(x, t) = e−x (1− (a− 1)t)

u(2)(x, t) = e−x
(

1− (a− 1)t+ (a− 1)2t2

2!

)
...

u(n)(x, t) = e−x
n∑
i=0

(−(a− 1)t)i
i! ,

(5.18)

which converges slowly to the exact solution

u(x, t) = lim
n→∞

u(n)(x, t) = e−(x+(a−1)t) . (5.19)

Note that the sequence (5.18) is the Taylor series of the temporal part of the
exact solution expanded about t = 0 and is therefore only useful for t < O(1).
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The GVIM calculations result in a different sequence of approximants,

u(0)(x, t) = e−x

u(1)(x, t) = e−x
a

+ e−at−x(a− 1)
a

u(2)(x, t) = e−x
a2 + e−at−x(a2 − 1)

a2 + e−at−x(a− 1)
a

t

u(3)(x, t) = e−x
a3 + e−at−x(a3 − 1)

a3 + e−at−x(a2 − 1)
a2 t+ e−at−x(a− 1)

2a t2

...

u(n)(x, t) = e−x
an

+ e−at−x
n−1∑
i=0

(an−i − 1)
an−ii! ti ,

(5.20)

which converges to the exact solution (5.19) for n→∞ as well.

We now turn to the BLUES function method, and follow the scheme outlined
in Section 5.1. First, the PDE (5.16) with initial condition f(x) is rewritten as
follows
Nt,x u(x, t) = ut(x, t)− uxx(x, t) + u(x, t)ux(x, t) + u(x, t)(u(x, t) + a)

= f(x)δ(t) ,
(5.21)

defined on (x, t) ∈ R × [0,∞) and the initial condition u(x, 0) = f(x) = e−x
has been converted to a source term by multiplication with a Dirac-delta
function in the temporal coordinate. Choosing the linear operator simple and
without spatial derivatives, one can define the associated linear PDE with source
ψ(x, t) ≡ f(x)δ(t) as follows

Lt u(x, t) = ut(x, t) + au(x, t) = ψ(x, t), (5.22)

which is solved by u(x, t) = f(x)G(t), with G(t) the Green function for Lt .
Note that we omitted the linear term uxx from the linear part Lt,x of the
operator Nt,x . This judicious choice, which is a distinct feature of the BLUES
strategy, not only simplifies the calculations but also considerably improves the
convergence.

We obtain a step function with exponential tail,

G(t) = Θ(t)e−at, (5.23)
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and the solution U(t) for the linear problem with arbitrary source ψ(t), for
t > 0, is

U(t) = (G ∗ ψ) (t) =
∫
R
dsG(t− s)ψ(s) =

∫ t

0−
dsG(t− s)ψ(s), (5.24)

since G(τ < 0) = 0 and s > 0.

We next define the residual operator Rx as the difference between the linear
and the nonlinear operator, i.e., Rx = Lt −Nt,x , so

Rx u = uxx − uux − u2 , (5.25)

and set up the iteration sequence based on (5.14) and (5.15) for the solution to
(5.21),

u(n+1)(x, t) = u(0)(x, t) + (B ∗ Rx u(n))(x, t)

= u(0)(x, t) +
t∫

0−

dsG(t− s)Rx u(n)(x, s)

= u(0)(x, t) +
t∫

0−

dsG(t− s)
[
u(n)
xx − u(n)u(n)

x − (u(n))2
]

(x, s),

(5.26)

where the BLUES function B(τ) is the Green function G(τ) of (5.23) for
the chosen linear operator Lt , whose action is given in (5.22). The zeroth
approximant is the convolution of the BLUES function with the source ψ(x, t),

u(0)(x, t) =
t∫

0−

G(t− s)ψ(x, s)ds = e−at−x . (5.27)
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Iterating through the procedure (5.26), one finds the following sequence of
approximants

u(0)(x, t) = e−at−x

u(1)(x, t) = e−at−x(1 + t)

u(2)(x, t) = e−at−x(1 + t+ t2

2! )

...

u(n)(x, t) = e−at−x
n∑
i=0

ti

i! ,

(5.28)

which converges to the exact solution (5.19) for n → ∞. Note that each
approximant is bounded and useful for all t by virtue of the overall factor e−2t.

We can now compare the results of the three different methods. Since all
three methods converge to the known exact solution (5.19), one can define an
error function E(n)(x, t) as the absolute value of the difference between the nth
approximant and the exact solution uex(x, t),

E(n)(x, t) = |uex(x, t)− u(n)(x, t)| . (5.29)

In Fig. 5.1, the approximants u(n)(x, t) (left panel) and the errors E(n)(x, t)
(right panel) for the different methods are shown for a = 3, n = 3 and fixed
position x = 1. One can observe that the error in ADM and VIM becomes very
large for values of t� 1, indicating that the approximants diverge for large t,
as expected. The error in the GVIM, however, saturates at a finite value which
can be calculated for all values of x as

lim
t→∞

E
(n)
GVIM(x, t) = e−x

an
, (5.30)

which for a = 3, n = 3 and x = 1 results in (27e)−1. Note that the errors for
both the ADM and VIM and for the GVIM are monotonically increasing in
time and hence the approximations decrease in accuracy for large values of t.
In contrast, for the BLUES function method the error vanishes in the limit
t → ∞ and this method provides the fastest convergence for all t > 0. The
reason for this improved performance is that the choice of the linear operator
part in the BLUES function method is free and can be tailored so as to render
all the approximants well bounded for all times.
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Figure 5.1: The approximants u(3)(x = 1, t) and the exact solution (5.19) (upper
panel) and the errors E(3)(x = 1, t) (lower panel) for the different methods:
ADM, HPM and VIM (5.18) (dotted line), GVIM (5.20) (dot-dashed line) and
BLUES (5.28) (dashed line). The parameter is a = 3.

5.3 Nonlinear Black-Scholes equation

For the following example, let us look at the field of economics. Unless otherwise
stated the functions, variables and parameters are reduced (dimensionless).
The Black-Scholes equation describes the value V (S, τ) of an option for some
underlying asset price S ∈ [0,∞) over a period τ ∈ [0, T ], with T the time
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of maturity, that is, the last moment on which an option can be exercised.
After expiration or maturity, the option contract will cease to exist and the
buyer cannot exercise their right to buy or sell. The underlying asset price S
is a stochastic variable and follows a geometric Brownian motion. In [47], the
authors consider a nonlinear Black-Scholes PDE for V (S, τ), which assumes
that the market is incomplete through the combined feedback effects of illiquid
markets and large trader effects. In this PDE S is treated as a continuous
variable, which we name s, and s and τ are treated as independent variables.
This PDE is the following,

ut + σ2s2

2 uss (1 + 2ρ s uss) + rs us − ru = 0 , (5.31)

with t the time until expiry, t = T − τ , u the value function, u(s, t) ≡ V (S, τ),
σ the volatility, r the risk-free interest rate. The constant ρ is a measure of the
liquidity of the market. In order to ensure that feedback effects from hedging
generate so-called volatility smiles, one has to choose this liquidity parameter
to be negative [48, 49]. We consider the initial condition u(s, 0) = f(s) =
s−
√
sS0/ρ− S0/(4ρ), where S0 ≡ S(τ = 0) is the starting price of the asset.

In [50], the authors study the solution of (5.31) by means of the ADM. This
gives the following sequence of component functions of the solution,

u0(s, t) = s−
√
sS0

ρ
− S0

4ρ

u1(s, t) = − (4r + σ2)
8ρ

(
S0

2 +
√
sS0

)
t

u2(s, t) = − (4r + σ2)2

128ρ

(
S0 +

√
sS0

)
t2

...

(5.32)

The solution is the sum of all the component functions ui(s, t),

uADM(s, t) =
∞∑
i=0

ui(s, t) . (5.33)

This claim can easily be verified by noticing that the component functions
ui(s, t) are the coefficients of the Taylor series of the exact solution [47],

u(s, t) = s−
√
S0

ρ

(√
s e(r+σ2

4 )t/2 +
√
S0

4 e(r+σ2
4 )t
)
. (5.34)
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The HPM results in exactly the same sequence of solutions as (5.32). The VIM
produces the following sequence of approximants to the solution of (5.31),

u(0)(s, t) = s−
√
sS0

ρ
− S0

4ρ

u(1)(s, t) = s−
√
sS0

ρ
− S0

4ρ −
(4r + σ2)

8ρ

(
S0

2 +
√
sS0

)
t

u(2)(s, t) = s−
√
sS0

ρ
− S0

4ρ −
(4r + σ2)

8ρ

(
S0

2 +
√
sS0

)
t

− (4r + σ2)2

64ρ

(
S0 +

√
sS0

) t2
2! −

(4r + σ2)2

512ρ
(
σ2S0

) t3
3!

...

(5.35)

which converges slowly to the exact solution (5.34).

Next, the GVIM produces the following iterates

u(0)(s, t) = s−
√
sS0

ρ
− S0

4ρ

u(1)(s, t) = s− 1
8rρ

(
S0

2 +
√
sS0

)(
e−rt(4r + σ2)− σ2)− √sS0

2ρ

u(2)(s, t) = s− 1
4ρ

(
1− σ2

2r + σ4

16r2

)(√
sS0 −

S0σ
2

16r

)
− S0(4r + σ3)2

1024r3ρ
e2rt

− 4r + σ2

64r2ρ

(
(4r − σ2)(S0 +

√
sS0) + 8r

√
sS0

)
ert

+ 16r2 − σ4

512r2ρ

(
8r
√
sS0 − σ2S0

)
tert

...
(5.36)

Finally, we study the BLUES method. As usual, we first rewrite equation (5.31)
with the inclusion of a source ψ(s, t) = f(s)δ(t), i.e.,

ut + σ2s2

2 uss (1 + 2ρ s uss) + rs us − ru = ψ , (5.37)
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and consider the associated linear operator we have used in the previous examples
together with the source ψ(s, t), i.e.,

Lt u = ut − ru = ψ , (5.38)
with Green function,

G(t) = Θ(t)ert . (5.39)
Note that in this example, the linear operator is chosen judiciously by not only
dropping the nonlinear term but some linear terms as well. Hence, the residual,
whose action is defined through

Rs u = −σ
2s2

2 uss (1 + 2ρ s uss)− rs us, (5.40)

still contains two linear terms. The zeroth approximant is the convolution of
the BLUES function (5.39) and the source ψ(s, t),

u(0)(s, t) =
t∫

0−

dt′G(t− t′)ψ(s, t′) =
(
s−

√
sS0/ρ− S0/(4ρ)

)
ert . (5.41)

The BLUES function method generates the following sequence of approximants

u(0)(s, t) =
(
s−
√
sS0

ρ
− S0

4ρ

)
ert

u(1)(s, t) =
(
s−
√
sS0

ρ
− S0(4r + σ2)

16rρ

)
ert −

(
rs− (4r − σ2)

8ρ
√
sS0

)
ertt

− σ2S0

16rρ e2rt

u(2)(s, t) =
(
s−
√
sS0

ρ
−
S0
(
4r − σ2)2 (8r − σ2)

512rρ3

)
ert

−
(
rs− (4r − σ2)

8ρ
√
sS0

)
ertt+

(
r2s− (4r − σ2)2

64ρ
√
sS0

)
ertt2

2

− S0

(
80r2σ2 − 16rσ4 + σ6

512r3ρ

)
e2rt + S0

(
48r2σ2 − 16rσ4 + σ6

512r2ρ

)
e2rtt

− S0

(
σ2(4r − σ2)2

512rρ

)
e2rtt2

2

...
(5.42)
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In Fig. 5.2 we compare the results from each of the above methods and also
compare their errors, at the level of the 3rd approximant or 3rd order (n = 3).
Note that we have not chosen an explicit value for the expiration time T and
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Figure 5.2: Exact solution uex(5, t) and approximants u(3)(5, t) in third iteration
or third order (upper panel). Difference E(3)(5, t) (lower panel) between the
exact solution (5.34) and the approximant of order n = 3 for the different
methods: ADM (5.32) and HPM (dot-dash-dashed line), VIM (5.35) (dotted
line), GVIM (5.36) (dot-dashed line), BLUES (5.42) (dashed line). The asset
price coordinate is fixed at s = 5. Reduced (dimensionless) values of the
parameters are r = 0.06, σ = 0.6, ρ = −0.02 and S0 = 4.

considered t ∈ [0,∞), i.e., T →∞. If one were to fix T > 0 at a finite value, it
is obvious that the accuracy of the approximate solutions for all of the above
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procedures decreases for t→ T , i.e., for increasing remaining time until end of
contract.

5.4 Porous medium equation with growth or decay

The final example is in the realm of fluid mechanics: the nonlinear porous
medium equation [51] with linear growth or decay,

wt −∆(wm)− βw = 0, (5.43)

with m > 1 and β ∈ R. We consider a density w(x, t) in one space dimension
with initial condition w(x, 0) = f(x) = x. Unless otherwise stated the functions,
variables and parameters are reduced (dimensionless). We will only consider a
quadratic nonlinearity, m = 2, which allows us to write (5.43) as follows

wt − 2wwxx − 2w2
x − βw = 0 . (5.44)

The components of the solution generated by the ADM are

w0(x, t) = x

w1(x, t) = 2t+ βxt

w2(x, t) = 3βt2 + β2x
t2

2

w3(x, t) = 7β2t3

3 + β3x
t3

6

...

wi(x, t) = 2(2i − 1)βi−1ti

i! + x
βiti

i! ,

(5.45)

for i ≥ 1. The nth-order approximant is the partial sum of the component
functions wi, i.e.,

w
(n)
ADM(x, t) =

n∑
i=0

wi(x, t) , (5.46)

and in the limit n→∞ this converges to the exact solution

w(x, t) = lim
n→∞

w(n)(x, t) = (x− 2
β

)eβt + 2
β

e2βt , (5.47)
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where the sign of β indicates whether there is growth or decay. Note that the
ADM generates term by term the exact coefficients of the powers of t in the
Taylor expansion in time of the solution. The HPM generates the same sequence
of solutions.

The VIM produces the following sequence of approximants to the solution of
(5.44),

w(0)(x, t) = x

w(1)(x, t) = 2t+ x+ βxt

w(2)(x, t) = 2t+ 3βt2 + 2β2t3

3 + x

(
1 + βt+ β2t2

2

)

w(3)(x, t) = 2t+ 3βt2 + 7β2t3

3 + 2β3t4

3 + β4t5

10 + x

(
1 + βt+ β2t2

2 + β3t3

6

)
...

(5.48)

which also converges to the exact solution (5.47). Note that VIM and ADM
produce different results. The VIM does not immediately give the exact
coefficients but recursively adjusts them until they saturate at the exact value.

Next, the GVIM produces the sequence

w(0)(x, t) = x

w(1)(x, t) = xeβt − 2
β

+ 2eβt
β

w(2)(x, t) = xeβt − 2
β

eβt + 2
β

e2βt

...

w(n)(x, t) = xeβt − 2
β

eβt + 2
β

e2βt .

(5.49)

For n ≥ 2, the approximants (5.49) are invariable. The GVIM in this
case produces the exact solution (5.47) already in the second iteration and
contributions from higher iterations are zero.
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We now turn to the BLUES function method. The PDE (5.43) with initial
condition w(x, 0) = f(x) can be rewritten as a nonlinear PDE with a source
ψ(x, t) = f(x)δ(t),

Nt,x w(x, t) = wt(x, t)− (wm(x, t))xx − βw(x, t) = ψ(x, t) , (5.50)

defined on (x, t) ∈ R× [0,∞). Choosing the linear operator to be of the same
form as the successful one used in the previous section, one can define the
associated linear PDE with the same source term,

Lt w(x, t) = wt(x, t)− βw(x, t) = ψ(x, t) (5.51)

and we recall the Green function for this linear operator,

G(t) = Θ(t)eβt . (5.52)

Note that in this case the linear operator is chosen by simply dropping (only)
the nonlinear term in Nt,x . We now obtain the residual operator Rx , which
acts as follows on the function w,

Rx w = (wm)xx (5.53)

and set up the iteration sequence for the solution to (5.50)

w(n+1)(x, t) = w(0)(x, t) + (B ∗ Rx w(n))(x, t)

= w(0)(x, t) +
t∫

0−

dsG(t− s)Rx w(n)(x, s)

= w(0)(x, t) +
t∫

0−

dsG(t− s)(w(n))mxx(x, s),

(5.54)

where the BLUES function B(τ) is the Green function G(τ) of (5.52) for
the chosen linear operator Lt , whose action is given in (5.51). The zeroth
approximant is the convolution of the BLUES function and the source ψ(x, t),
i.e.,

w(0)(x, t) =
t∫

0−

dsG(t− s)ψ(x, s) = x eβt . (5.55)
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Iterating further according to the procedure (5.54), one finds the following
sequence of approximants for m = 2

w(0)(x, t) = xeβt

w(1)(x, t) = xeβt − 2
β

eβt + 2
β

e2βt

...

w(n)(x, t) = xeβt − 2
β

eβt + 2
β

e2βt ,

(5.56)

which, remarkably, produces the exact solution (5.47) to (5.43) already in the
first iteration. Higher iterations remain at this “fixed point”. In Fig. 5.3 we
compare the results from each of the above methods and also compare their
errors, at the level of the second iteration, where both the BLUES function
method and the GVIM have reached the exact solution.

5.5 Diffusion equation with general nonlinearity

We now set the stage for the analysis of a simple physical model for the
evolution of interfaces by first considering a more general example from a
technical viewpoint. The heat equation with diffusion constant D > 0 and
general nonlinearity umunx , where m,n ≥ 0 is given by the PDE,

Nt,x u = ut −Duxx − umunx = 0, (5.57)

with Gaussian initial condition u(x, 0) = f(x),

f(x) = e−x2/2σ2

√
2πσ2

(5.58)

and boundary conditions u(|x| → ∞, t) = 0. As before, we adopt the notation
Nt,x u to denote the nonlinear operator acting on u(x, t). The associated linear
PDE of our choice is the one-dimensional heat equation describing normal
diffusion,

Lt,x u = ut −Duxx = 0, (5.59)
with the same initial condition and the same boundary conditions. This linear
PDE has Green function

G(x, t) = e− x2
4Dt

√
4πDt

. (5.60)
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Figure 5.3: Exact solution wex(1, t) and approximants w(2)(1, t) in second
iteration or second order (upper panel). Note that the ADM and HPM, and
the BLUES method and GVIM give identical results at this order n = 2,
respectively. The BLUES/GVIM approximant is exact. Difference E(2)(1, t)
(lower panel) between the exact solution (5.47) and the approximant of order
n = 2 for the different methods: VIM (5.48) (dotted line), BLUES and GVIM
(5.56) (dot-dashed line) and ADM and HPM (5.45) (dashed line). The position
in space is fixed at x = 1 and β = 3.

In the small time limit t→ 0, the Green function (5.60) approaches a Dirac-delta
distribution δ(x). The solution to the diffusion equation with the Gaussian
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initial condition f(x) can be calculated by convoluting f(x)δ(t) with the kernel
G(x, t),

u(0)(x, t) =
t∫

0−

∫
R

dy dsG(x− y, t− s)f(y)δ(s). (5.61)

Integrating over time and space gives

u(0)(x, t) =
∫
R

dy G(x− y, t)f(y) = e−x2/2Σ2(t)√
2πΣ2(t)

, (5.62)

which is itself a decaying Gaussian with mean zero and with variance Σ2(t) ≡
σ2 +2Dt. This solution u(0) serves as the zeroth iteration in the BLUES scheme.
One now considers the residual operator Rx = Lt,x −Nt,x which can be applied
to the zeroth approximant (5.62),

Rx u(0)(x, t) =
(
u(0)(x, t)

)m (
u(0)
x (x, t)

)n
= (−1)nx

ne−(m+n)x2/2Σ2(t)

(2π)m+n
2 Σ(t)m+3n

.

(5.63)

Convoluting the previous expression with the Green function (5.60) results in
the correction

∆u(1,0)(x, t) = u(1)(x, t)− u(0)(x, t)

= (−1)n

(2π)m+n+1
2

t∫
0−

ds e−x2/2S2(t,s)√
2D(t− s)Σ(s)m+3n

∫
R

dy yne−α(y−cx)2
,

(5.64)

where S2(t, s) ≡ 2D(t − s) + Σ2(s)/(m + n), which can be interpreted as
a variance. Further, c(t, s) ≡ (Σ2(s)/S2(t, s))/(m + n) and α(t, s) ≡ (m +
n)(S2(t, s)/Σ2(s))/(4D(t− s)). The spatial integral can be calculated exactly

Ξ(x, t, s,m, n) ≡
∫
R

dy yne−α(t,s) (y−c(t,s) x)2

= α−
n+1

2

{
Γ
(
n+1

2
)

1F1
(
−n2 ,

1
2 ,−αc

2x2) , n even
n
√
αc2x2 Γ

(
n
2
)

1F1
(
−n−1

2 , 3
2 ,−αc

2x2) , n odd
(5.65)

where Γ(n) is the gamma function and 1F1(a, b, z) is the confluent hypergeo-
metric function of the first kind [52]. This spatial integral can equivalently be
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expressed in terms of the Hermite polynomials Hn(z) in the following way,

Ξ(x, t, s,m, n) ≡
(
−i
2

)n√
π

α(t, s)n+1Hn

(
i
√
α(t, s)c(t, s)x

)
. (5.66)

We list here the following useful properties for the hypergeometric functions
and for the Hermite polynomials:

1F1(0, b, z) = 1 (5.67)

1F1(−1, b, z) = 1− z

b
(5.68)

H1(z) = 2z (5.69)

H2(z) = 4z2 − 2 . (5.70)

The first correction to the zeroth approximant (5.62) now becomes

∆u(1,0)(x, t) = (−1)n

(2π)m+n+1
2

t∫
0−

ds e−x2/2S2(t,s)√
2D(t− s)Σ(s)m+3n

Ξ(x, t, s,m, n) . (5.71)

For some choices of (m,n) this can be simplified greatly. In the next section we
discuss a physical system which features two such cases combined, (m,n) = (1, 1)
and (m,n) = (0, 2).

5.6 Interface growth under shear

We propose a minimalistic model for the growth of an interface between two
fluids near two-phase coexistence and subject to an externally imposed shear
flow. On the one hand, we exploit the finding that the growing interface between
a stable and an unstable domain in a kinetic Ising model at low temperature
can be described by including in the effective growth equation a Kardar-Parisi-
Zhang (KPZ) nonlinearity which allows for lateral growth [3, 53, 4, 54]. On the
other hand, we make use of the growth equation proposed for studying interface
fluctuations under shear flow, including a Burgers type of nonlinearity [55]
which allows for a background linear shear flow imposed on the phase-separated
fluid [56, 57]. We combine the two growth equations but limit ourselves to the
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minimal setting of two-dimensional systems (i.e., a one-dimensional interface)
and the deterministic version of the equation. We ignore thermal noise and
postpone an application to the stochastic DE until later work.

Our starting point is, as usual, the Edwards-Wilkinson equation for interface
growth [2], which, in its deterministic version, reads

ht −Dhxx = 0 , (5.72)

where h(x, t) is the height of an interface that fluctuates, measured relative to
a (horizontal) straight reference line (along x). This reference line is co-moving
with the growing interface and therefore a velocity term v is omitted in (5.72).
D is a diffusion coefficient (proportional to the interfacial tension whose action
is to smoothen the interface).

h(x, t + dt)

h(x, t) x

y
vx(y) − vx(0)

+

−

+

−

+

−

+

−

+

−

Figure 5.4: Cartoon of a coarse-grained growing interface, a density contour
of which is described by a collective coordinate h(x, t), between (stable) “−”
and (unstable) “+” domains in the 2d Ising model representation of a phase-
separated fluid. (a) In the absence of flow the interface advances mainly in
the direction normal to its tangent. (b) The fluid as a whole is subject to an
externally imposed shear flow with linear profile vx(y).

A cartoon of the physical setting is shown in Fig. 5.4. Following Bray et
al. [56, 57] we include an externally imposed shear flow. The motivation, in
part, for this was that there is an interesting subtle competition between the
smoothing of an interface under shear and the roughnening of an interface under
thermal noise. Later studies elucidated interface confinement under shear using
Monte Carlo simulation [58, 59]. Incorporating a (horizontal) shear velocity
profile vx(y) amounts to invoking the total time derivative,

ht →
dh

dt
= ht + vx(h)hx, (5.73)

since h is the y-coordinate of the interface position. For shear flow, vx(h) is a
linear function Ah+B and we can choose a reference frame co-moving at the
mean velocity, so B = 0. We thus add a Burgers convective nonlinearity to the
PDE.
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Next, following Devillard and Spohn [53] we recognize that the interface growth,
ignoring the lattice anisotropies of the model, is in the direction normal to the
local tangent. This growth, in which a stable domain overtakes an unstable
one, is driven by a pressure difference, or chemical potential difference, with
respect to two-phase coexistence (i.e., a non-zero external magnetic field in the
Ising model). Incorporating this lateral growth amounts to invoking the KPZ
geometric correction,

v → v + v

2(hx)2, (5.74)

where v is the velocity of the growing interface. Since the term v is already
absorbed in (5.72) we need to add only the gradient-squared term to the PDE.
Altogether we obtain the nonlinear PDE

ht +Ahhx = Dhxx + v

2h
2
x , (5.75)

where A is the shear rate.

This PDE combines the Burgers and KPZ nonlinearities but, we recall, ignores
thermal noise. When taken separately, each of these two nonlinearities amount
to exactly solvable PDEs (through the use of the Cole-Hopf transform), but to
our knowledge not when combined. This makes it worthwhile to derive a useful
analytical approximant to the solution of the combined equation. Note that
in our physical context extra terms proportional to h or h2 are not present in
(5.75) because in the absence of shear flow we require translational invariance of
the growth equation along the y-direction. In addition, we require translational
invariance along x. Also note that in terms of the scaling properties of interface
growth the Burgers term is the dominant perturbation [56, 57] and the KPZ
term is subsidiary. We do not discuss these properties here.

There is an alternative route to the PDE (5.75) which is worth pointing out.
One may start from the stochastic KPZ equation for interface growth and
couple it to the stochastic Navier-Stokes (NS) equation for the velocity field
v, by replacing the time derivative in KPZ by the total time derivative, as in
(5.73), and invoking the NS equation for v. This system of coupled DEs was
proposed and studied in [60]. If, in that system, one ignores the random force
in the stochastic NS equation and imposes a (deterministic) shear flow velocity
profile, and if one also ignores thermal noise in the KPZ equation, one arrives
again at (5.75).

We now proceed to the calculations and adapt the notation slightly in order to
be conform with that of previous sections. We define the nonlinear operator,
acting on the function u(x, t),

Nt,x u = ut −Duxx + αuux + βu2
x , (5.76)
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with α and β real parameters. For the linear operator Lt,x we choose the entire
linear part of Nt,x , which is the linear diffusion operator. The residual operator
Rx (cf. Section 5.5), is then defined through

Rx u = −αuux − βu2
x (5.77)

By doing so, the nonlinear problem would be suited to be tackled by perturbation
theory (PT), if the terms that feature the parameters α and β can be considered
to be small compared to the terms of the linear part. This brings us in
position to compare the BLUES iteration, which is non-perturbative, to a
direct perturbation expansion, keeping in mind that the former makes no
assumptions on the magnitude of the nonlinear terms. What we find is akin to
our observations in the treatment of ODEs [33]. The BLUES iteration generates
a sequence that is in general different from summing up the terms a series
expansion, except possibly in the first iteration in which the BLUES result may
coincide with that of 1st-order PT.

We consider two different initial conditions, corresponding to distinct physical
situations. The first is a single (Gaussian) interface protrusion or “bump",
for which we will illustrate the method at the level of the zeroth and first
iteration only, and show its close similarity to 1st-order PT. The second one is a
(sinusoidal) periodic interface front, for which we will study the time evolution
to higher level in the iteration scheme. For that case, we will perform a detailed
comparison of the results from ADM, VIM, GVIM, BLUES and PT.

5.6.1 Gaussian initial condition

First, we will consider the situation of a solitary interface bump that can be
modeled by a Gaussian initial condition u(x, 0) = f(x), given in equation (5.58).
We assume the boundary conditions u(|x| → ∞) = 0. The associated linear
PDE is the heat equation (3.18). The zeroth approximant is now the decaying
Gaussian solution (5.62) of the linear equation. Using equation (5.71) twice,
once for the convective nonlinearity (Burgers) and once for the nonlinear lateral
growth (KPZ), the first approximant can be calculated analytically. We report
here the result (a detailed calculation can be found in Appendix A.3),

u(1)(x, t) = e−x2/2Σ2(t)√
2πΣ2(t)

+ β

4πD

[
e−x2/Σ2(t)

Σ2(t) − e−x2/Σ2(2t)

Σ(2t)σ

]

+ α

4D
√

2π

[
e−x2/2Σ2(t)

Σ(t)

(
erf
(

x√
2Σ(t)

)
− erf

(
σx√

2Σ(t)Σ(2t)

))]
(5.78)
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Note that the effects introduced by the convective nonlinearity contain only odd
functions of x, and the effects introduced by the nonlinear growth contain only
even functions of x. In the first iteration the effect of nonlinearity is a simple
superposition of the individual nonlinear effects, i.e., nonlinear convection and
nonlinear growth. Only in higher iterations does the interplay (mixing) between
these different effects take place.

At this level of approximation, the BLUES approximant u(1) coincides with the
result of straightforward PT to first order in α and β. This is not surprising in
view of the fact that the chosen residual operator coincides with the nonlinear
part of the differential operator, which is precisely the “perturbation" when
α and β are considered small. We have also performed the ADM and VIM
calculations for this case. These methods are, however, not suitable here because
they produce large oscillations that grow uncontrollably both in time and in
higher orders of approximation. We will return to these methods when we
consider a periodic interface undulation.

In the first iteration of the nonlinear problem we obtain,∫
R
dxu(1)(x, t) = 1 + β

4D
√
π

(
Σ−1(t)− σ−1) (5.79)

This is a non-decreasing function of time for β < 0, hence the bump grows as
a consequence of the lateral growth correction, even when there is no overall
(vertical) growth along y in the co-moving frame. Note that the parameter α
does not enter the equation. The shear flow only moves particles along x and
does not influence the bump size but only its shape.

In Fig. 5.5 the short-time shift of the bump is illustrated (snapshot at t = 1/2),
as obtained with zeroth and 1st iteration BLUES as well as zeroth and 1st-order
PT, which gives the same results. In Fig. 5.6 the time evolution at fixed position
(x = 2) is shown, using the zeroth and first BLUES approximants. In both
figures the results are compared with the numerically exact solution.

5.6.2 Space-periodic initial condition

For convenience and simplicity, in this example we will work with dimensionless
variables x and t, as well as dimensionless u, D, α and β. To study a space-
periodic interface contour, we can choose the following trigonometric initial
condition f(x)

f(x) = sin x (5.80)

and examine the behavior of solutions of the suitably rescaled version of equation
(5.76) on the real line. The zeroth approximant is the convolution integral of
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Figure 5.5: Solitary Gaussian height profile at time t = 1/2. The numerical
solution (red line) is compared with the zeroth (dot-dashed line) and first
(dashed line) BLUES approximants (5.78). Reduced (dimensionless) values of
the parameters are D = σ = α = 1 and β = −1. These results coincide with,
respectively, those of standard zeroth and 1st-order PT in the parameters α
and β. In the course of time the Gaussian moves to the right (for α > 0) and
grows somewhat (for β < 0) until its mass saturates.

the Green function (5.60) with (5.80),

u(0)(x, t) = e−Dt sin x . (5.81)

One can now apply the residual operator (5.77) to (5.81). After simplifying the
result by using trigonometric power reduction identities, the residual is

Rx u(0)(x, t) = −e−2Dt

2 (α sin 2x+ β cos 2x+ β) (5.82)

The first approximant to the solution of equation (5.76) can be calculated by
convoluting the residual (5.82) with the Gaussian Green function, making use
of the following identities∫

R

dy
e−

(x−y)2
4D(t−s)√

4πD(t− s)
sin ay = e−a

2D(t−s) sin ax

∫
R

dy
e−

(x−y)2
4D(t−s)√

4πD(t− s)
cos ay = e−a

2D(t−s) cos ax

(5.83)
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Figure 5.6: Solitary Gaussian time evolution at position x = 2. The numerical
solution for the height profile u (red line) is compared with the zeroth (dot-
dashed line) and first (dashed line) BLUES approximants (5.78). These results
coincide with, respectively, those of standard zeroth and 1st-order PT in the
parameters α and β. Reduced (dimensionless) values of the parameters are
D = σ = α = 1 and β = −1.

Hence, the first approximant is

u(1)(x, t) = e−Dt sin x+
e−2Dt (e−2Dt − 1

)
4D

[
α sin 2x+ β cos 2x+ βe2Dt]

(5.84)
Higher approximants can be calculated with moderate effort. In Fig. 5.7 we
show the first three BLUES approximants together with the numerically exact
solution for a fixed time t = 1/3. Next, in Fig.5.8 we compare the numerical
solution and the fourth BLUES approximant with the 4th-order VIM and ADM
results at t = 1/3.

Let us now juxtapose BLUES approximant of the second iteration with a 2nd-
order solution obtained from PT. The first(-order) approximants of both methods
coincide exactly so we will consider the following perturbation expansion uPT
for the solution

uPT (x, t) = u0,0(x, t) + αu1,0(x, t) + α2u2,0(x, t) + βu0,1(x, t)

+ β2u0,2(x, t) + αβu1,1(x, t) +O(αmβn), m+ n = 3,
(5.85)

and we assume, within PT, to avoid ambiguity, that α and β are of the same
order of magnitude. Performing the expansion and solving the resulting linear
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Figure 5.7: Periodic height profile at time t = 1/3. The numerical solution (red
line) is compared with the n = 0, 1 and 2 BLUES approximants. The second
approximant nearly coincides with the numerical solution at this resolution.
Parameter values are D = α = 1 and β = −1.
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Figure 5.8: Periodic height profile at time t = 1/3. The numerical solution (red
line) is compared with the n = 4 BLUES method approximant (dashed line)
and the n = 4 approximant of the VIM and the ADM (respectively dot-dashed
and dotted lines). At this resolution the fourth BLUES approximant falls on
top of the numerical solution. Parameters are D = α = 1 and β = −1.
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PDEs yields the expressions given in Appendix A for the perturbative solution
u

(2)
PT up to, and including, second order in α and β.

Note that PT generates terms of second order in α and β, i.e., α2, β2 and αβ,
and Fourier modes up to and including the third harmonic (with respect to the
period of the initial condition). In contrast, in the second iteration the BLUES
function method does not yet provide the exact coefficients of the 2nd-order
terms. Furthermore, this method also generates terms of higher order in α and
β, e.g., α3, β3, α2β, etc., and Fourier modes of the fourth harmonic are also
already present in the second approximant. We provide the full expressions of
the Fourier coefficients of the 2nd approximant in Appendix A and compare
them quantitatively with PT.

In Fig. 5.9, we compare the second BLUES approximant with 2nd-order PT at
t = 2/3. Finally, in Fig. 5.10 we show the various n = 2 approximations (ADM,
VIM and BLUES) for a fixed spatial coordinate x = π. We remark that the
2nd-order approximations for the ADM and VIM coincide exactly for x = π.
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u(2)PT(x,2/3)

u(2)BLUES(x,2/3)
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0.8

1.0
u(x,2/3)

Figure 5.9: Periodic height profile at time t = 2/3. The numerical solution (red
line) is compared with the n = 2 BLUES approximant (dashed line) and the
2nd-order PT (dot-dashed line). Parameters are D = α = 1 and β = −1.

From equation (5.84) it is easy to see that a second harmonic is generated by both
deposition and shearing. In further iterations higher harmonics are generated.
Hence, the BLUES function method iteratively generates all harmonics as a
Fourier series for which the coefficients are time-dependent. These coefficients
are recursively modified by the method up to the point that they converge to
their final exact value. For the function u(x, t), for fixed time t, the complex
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Figure 5.10: Periodic height profile time evolution at position x = π. The
numerical solution (red line) is compared with the n = 2 BLUES approximant
(dashed line), the n = 2 approximants of ADM and VIM (dotted line), which
coincide for x = π, and the n = 2 PT (dot-dashed line). Parameters are
D = α = 1 and β = −1.

(cp) and real (ap and bp) pth harmonic coefficients in the Fourier series are given
by

cp(t) = 1
2π

∫ π

−π
dxu(x, t)e−ipx

ap(t) = 1
π

π∫
−π

dxu(x, t) cos px

bp(t) = 1
π

π∫
−π

dxu(x, t) sin px,

(5.86)

with cp = (ap − ibp)/2. In Fig. 5.11 the time evolution of the modulus of the
coefficients cp(t) is shown for p ∈ {0, 1, 2, 3} and a comparison is made between
the numerically exact values, the n = 4 BLUES approximants and the n = 4
ADM and VIM approximants. Note that the coefficients calculated with both
the ADM and VIM diverge uncontrollably (truncated lines) as time increases
while the BLUES approximants reproduce the exact coefficients almost perfectly.
For p = 3 the ADM and VIM are nearly coincident for small t.
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It is conspicuous that BLUES iteration progresses differently from PT. There
is even a qualitative difference. For long times the asymptotic behavior of the
BLUES approximants agrees with the numerically exact solution in that all the
harmonics decay to zero. This is not always the case in the PT (e.g., for |c1(t)|
and |c2(t)| in Fig. 5.12). Note that the |c2(t)| coefficients for BLUES and PT
are indistinguishable on the scale of Fig. 5.12.

An interesting quantity is the average asymptotic “excess” ∆ of the solution
as a consequence of the growth of the interface. This is given by the long-time
limit of c0(t),

∆ ≡ lim
t→∞

c0(t) = 1
2π lim

t→∞

∫ π

−π
dxu(x, t). (5.87)

The numerically obtained precise value for the excess is ∆num = 0.2356, while the
nth BLUES approximants give ∆(n=0)

BLUES = 0, ∆(n=1)
BLUES = 0.25, ∆(n=2)

BLUES = 0.2604,
∆(n=3)

BLUES = 0.2421, ∆(n=4)
BLUES = 0.2358. The parameter values are D = α = 1 and

β = −1.
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Figure 5.11: Time evolution of the modulus of the pth coefficient, for p ∈
{0, 1, 2, 3}, in the Fourier series expansion of the solution of (5.76). The
numerical solutions (symbols) for |cp(t)| are compared with the fourth BLUES
approximant (full lines), 4th-order ADM (dotted lines) and 4th-order VIM
(dot-dashed lines). Parameter values are D = α = 1 and β = −1. For p = 3 the
ADM and VIM are nearly coincident for small t.
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Figure 5.12: Time evolution of the modulus of the pth coefficient in the Fourier
series expansion of the solution of (5.76). The numerical solutions (symbols)
for |cp(t)| are compared with the second BLUES approximant (full lines) and
2nd-order PT. Parameter values are D = α = 1 and β = −1. The |c2(t)|
coefficients for BLUES and PT are indistinguishable on this scale.



Chapter 6

Systems of coupled
differential equations

In this chapter we present a redefinition of the BLUES function method to
study systems of coupled differential equations. We first study extensions to the
well-known SIR and SEIR epidemiological models, which are coupled ordinary
differential equations. Next, we combine the newly minted matrix BLUES
function method with concepts from the previous chapter 5 to investigate
whether the BLUES function method can be usefully extended to include
coupled partial differential equations.

This chapter is based on our most recent work, which can be found in the
preprints “Epidemic processes with constant vaccination and immunity loss
studied with the BLUES function method” [61] and “The BLUES function
method for second-order partial differential equations: application to a nonlinear
telegrapher equation” (in preparation). It is supplemented with additional
calculations.

6.1 The BLUES function method for coupled DEs

6.1.1 Coupled ordinary differential equations

Here we extend the BLUES iteration to a system of coupled ordinary DEs. The
role of the inhomogeneous source (or sink) term in the context of the ordinary
DE will now be taken over by a vector of sources (or sinks).

78
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Let us start from an n-dimensional system of inhomogeneous nonlinear coupled
ordinary DEs that can be written as a nonlinear operator Nt acting on a vector
X(t), with source vector χ(t)Θ(t), with Θ(t) the Heaviside step function (which
we take to be unity for positive times including t = 0),

NtX(t) = χ(t), ∀t > 0 (6.1)

and suitable initial conditions for t = 0

X(0) = C . (6.2)

We now judiciously decompose the nonlinear operator Nt into a linear operator
Lt, which contains inter alia a first derivative in time, and a residual operator
R, i.e., R ≡ Lt − Nt, which contains the nonlinear part of Nt. We add the
subscript t to the linear and nonlinear operators to emphasize their dependence
on time. In the application we consider in this work, R does not depend on t.
Thus the action of the linear operator on X results in the following associated
linear coupled system

LtX = Xt −AX = χ, ∀t > 0 (6.3)

where the subscript denotes the derivative w.r.t. time and the same boundary
conditions are imposed as in (6.1). The elements of the matrix A are constants
in most of the applications we have in mind. We now propose to rewrite the
system of DEs in an equivalent form by incorporating the initial condition
through multiplication of C with a Dirac delta source δ(t) located at t = 0 and
by including this term on the right-hand-side of the inhomogeneous system, i.e.,

LtX = Xt −AX = χΘ +Cδ ≡ ψ, ∀t ≥ 0 (6.4)

where we have combined the external source χΘ and the “initial condition
source” Cδ into the combined source ψ. This formulation amounts to reset the
initial condition to zero, so that X(t) = 0 for t ≤ 0−, followed by a jump in
X implied by integrating the DE over the delta source, so that X(0+) = C
and X(t) evolves in a continuous manner for t > 0. The solution of this linear
system (6.48) is the following convolution integral [62, 63]

X(t) = (G ∗ψ)(t) = G(t)C +
∫
R
G(t− t′)χ(t′)Θ(t′)dt′, ∀t > 0 (6.5)

where G(t) is the Green function matrix for the inhomogeneous linear system.
This object can be calculated by finding the matrix exponential exp(At) ≡
1+At+ ..., i.e.,

G(t) = eAtΘ(t) . (6.6)



80 SYSTEMS OF COUPLED DIFFERENTIAL EQUATIONS

This Green function matrix solves the linear system with a delta function unit
matrix source, i.e., it is a solution of the matrix equation

Gt(t)−AG(t) = δ(t)1. ∀t ≥ 0 (6.7)

Adopting the BLUES function strategy, a solution to the nonlinear system (6.1),
rewritten in the equivalent form

NtX = χΘ +Cδ ≡ ψ, ∀t ≥ 0 (6.8)

is now proposed in the form of a convolution X(t) = (B ∗ φ)(t), in which
the function B(t), named BLUES function, is taken to be equal to the Green
function of the chosen related linear system, i.e., B(t) = G(t) and the new source
φ(t) is to be calculated by systematic iteration, using the given (combined)
source ψ(t). This procedure starts from the following implicit equation, which
makes use of the action of the residual operator,

φ = ψ +R(B ∗ φ) . (6.9)

To find the solution to the nonlinear system (6.1), equation (6.9) can be iterated
to calculate an approximation for φ in the form of a sequence in powers of
the residual R. This leads to the sequence φ(n)(t), with φ(0)(t) = ψ(t). By
subsequently taking the convolution product with B(t), approximate solutions
X

(n)
ψ (t) to (6.1) can be obtained. Explicitly, the iteration for these approximants

reads

X
(n)
ψ (t) = (B ∗ φ(n))(t) = X

(0)
ψ (t) +

(
B ∗ RX(n−1)

ψ

)
(t) , (6.10)

where
X

(0)
ψ (t) = (B ∗ φ(0))(t) = (B ∗ψ)(t) (6.11)

is the zeroth approximant, which is the convolution product of the linear
problem. We now turn to applying the BLUES iteration procedure to the SIRS
epidemiological model for the spreading of infectious diseases.

6.1.2 The SIRS model with constant vaccination

The SIRS model consists of a group of susceptible (S), infected (I) and
recovered/immune (R) (human) individuals. The total population N = S+I+R
can grow by virtue of a (constant) birth rate π and decay through natural deaths
at a rate µ. At birth, the individuals are vaccinated with probability p and
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consequently acquire immunity, effectively adding up to the group of immune
individuals. The remainder of the new births are added to the susceptible group
with probability 1 − p. Through contact with infected individuals, a person
can become infected, following a mass-action law βSI with force of infection
βI. The infected can recover with rate γ, acquiring (temporary) immunity and
moving to the group of recovered or immune individuals. Finally, immunity can
be lost with rate ξ, whereby recovered individuals move back to the susceptible
population. Fig. 6.1 illustrates these different processes in a flow diagram. We
assume that all system parameters and populations are positive, and 0 ≤ p ≤ 1.

S I R
Nπ(1 − p) βSI γ

ξ

Nπp

µS µI µR

Figure 6.1: SIRS model with vaccination, immunity loss, births and natural
deaths.

The interactions between the different populations can be described by the
following nonlinear system of DEs, in which the prime denotes derivative w.r.t.
time,

S′(t) = N(t)π(1− p)− βS(t)I(t)
N(t) − µS(t) + ξR(t) (6.12a)

I ′(t) = β
S(t)I(t)
N(t) − (γ + µ)I(t) (6.12b)

R′(t) = N(t)πp+ γI(t)− (µ+ ξ)R(t) . (6.12c)

The time evolution of the total population N = S + I + R can be found by
adding (6.12a)-(6.12c)

N ′(t) = (π − µ)N(t) , (6.13)

which indicates that the population is not constant. N(t) is a nondecreasing
function of t when the birth rate is higher than or equal to the death rate, π ≥ µ.
To study the relative importance of the various population fractions, we scale
S, I and R by the total population N , i.e., s(t) = S(t)/N(t), i(t) = I(t)/N(t)



82 SYSTEMS OF COUPLED DIFFERENTIAL EQUATIONS

and r(t) = R(t)/N(t). This transforms the system (6.12) into the following
system for the fractions,

s′(t) = π(1− p)− βs(t)i(t)− πs(t) + ξr(t) (6.14a)

i′(t) = βs(t)i(t)− (γ + π)i(t) (6.14b)

r′(t) = πp+ γi(t)− (π + ξ)r(t) , (6.14c)

where s(t) + i(t) + r(t) = 1, ∀t ≥ 0. Note that µ is eliminated by this
transformation. By using the constraint on the population fractions, we can
eliminate r(t) and study the “two-dimensional” invariant system

s′(t) = π(1− p)− βs(t)i(t)− (π + ξ)s(t)− ξi(t) + ξ (6.15a)

i′(t) = βs(t)i(t)− (π + γ)i(t) . (6.15b)

From a stability analysis performed in appendix B.1, we deduce that
the above system has two globally stable fixed points, which are known
exactly: a disease-free equilibrium (B.1a) ε0 ≡ (s∗0, i∗0) =

(
1− πp

π+ξ , 0
)

for
which the disease is eradicated and an endemic equilibrium (B.1b) εe ≡
(s∗e, i∗e) =

(
π+γ
β , β((1−p)π+ξ)−(γ+π)(ξ+π)

β(γ+π+ξ)

)
for which the disease persists and

keeps circulating through the population. The final state of the system is
characterised by the vaccination reproduction number RV

RV = β ((1− p)π + ξ)
(π + γ)(π + ξ) , (6.16)

which represents the average number of susceptible individuals that are infected
by one sick individual during their infectuous period, while a vaccination
program is in long-time use [64].

Obviously, the endemic equilibrium εe can only exist when s∗e < 1 and i∗e > 0
which means that the vaccination reproduction number must satisfy RV > 1.
The disease will be fully eradicated whenever the disease-free equilibrium is the
only possible stable fixed point and the endemic equilibrium does not exist. This
happens when the vaccination probability is higher than the critical vaccination
threshold p(SIRS)

c , which can be inferred from equation (6.16) by setting RV = 1,

pc =
(
ξ

π
+ 1
)(

1− γ + π

β

)
. (6.17)

Note that pc may exceed unity, whereas p cannot.
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6.1.3 BLUES function method for the SIRS model

To find solutions of the system (6.15), we can write it as a nonlinear matrix
equation, as was demonstrated in section 6.1, i.e.,

NtX(t) = ψ(t) , (6.18)

with X(t) the vector of solutions,

X(t) =
(
s(t)
i(t)

)
(6.19)

and with source vector ψ(t) = χΘ(t) +Cδ(t). Now χ is the (time-independent)
vector of external sources and C the vector of initial conditions, i.e.,

χ =
(
χs
χi

)
and C =

(
s0
i0

)
≡
(
s(0)
i(0)

)
. (6.20)

Note that we have included the initial conditions in the source ψ by
multiplication with a Dirac point source located at t = 0, as was explained in
Section 6.1.

Now we judiciously tailor the linear operator that is congruous with the
asymptotic equilibrium, by rewriting the nonlinear term in (6.15) so that
already the linear system captures the stable fixed point exactly. This is done
by including the deviations of the population fractions from their equilibrium
values in the (revised) nonlinear term, as follows,

s′(t) = π(1− p)− β(s(t)− s∗)(i(t)− i∗)− (π + ξ − βi∗)s(t)

− (ξ + βs∗)i(t) + ξ + βs∗i∗ (6.21a)

i′(t) = β(s(t)− s∗)(i(t)− i∗)− (π + γ − βs∗)i(t) + βi∗s(t)− βs∗i∗ , (6.21b)

where s∗ and i∗ are the elements of the fixed point vector ε = (s∗, i∗) which
represents the equilibrium that is reached. This equilibrium depends uniquely
on the value of RV . Note that the refurbished nonlinear term vanishes at the
fixed point and represents the product of the fluctuations in susceptible and in
infected fractions relative to the equilibrium values. This approach captures the
correct asymptotic behavior for long times provided the linear relaxation times
for both s(t) and i(t) exist. This is the case for all RV 6= 1. We will discuss the
special (critical) case RV = 1 separately.

With the calibration chosen as in (6.21) we proceed to identify the linear
operator

LtX = Xt −AX = χΘ +Cδ = ψ , (6.22)
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where the subscript t on X denotes the time derivative, A is the matrix with
elements

A =
(
−(π + ξ − βi∗) −(ξ + βs∗)

βi∗ −(π + γ − βs∗)

)
, (6.23)

and χ is the vector with elements

χ =
(
π(1− p) + ξ + βs∗i∗

−βs∗i∗
)
. (6.24)

The (nonlinear) residual operator R applied to the solution vector X then takes
the form,

RX(t) =
(
−β(s(t)− s∗)(i(t)− i∗)
β(s(t)− s∗)(i(t)− i∗)

)
. (6.25)

Following the procedure outlined in Section 6.1, we construct an iteration
sequence (6.10) for the solution vector X(t), i.e.,

X(n)(t) = (B ∗ φ(n))(t) = X(0)(t) +
(
B ∗ RX(n−1)

)
(t) , (6.26)

where B(t) is taken to be the matrix Green function G(t) for the linear problem
defined through (6.22). This G(t) can be found as the inverse of the fundamental
matrix of the matrix of coefficients A or equivalently as the matrix exponential
of tA multiplied by a step function, i.e.,

G(t) = etA Θ(t) . (6.27)

For the disease-free equilibrium (RV < 1) we obtain,

G(t) =
(

e−(π+ξ)t ξ+(π+γ)RV
(ξ−γ)+(π+γ)RV

(
e−(π+ξ)t − e−(π+γ)(1−RV )t)

0 e−(π+γ)(1−RV )t

)
Θ(t) . (6.28)

In this (simple) case the Green function matrix is triangular, so that its
eigenvalues are conspicuous on the main diagonal. These eigenvalues contain
the essential “damping” by virtue of the decaying exponentials, with finite
“linear relaxation times” τs = 1/((π + ξ) and τi = 1/((π + γ)(1−RV )). Note
that τi diverges for RV ↑ 1. In this limit the relaxation to the disease-free
equilibrium becomes “nonlinear”. The damping (for RV < 1) ensures that the
long-time asymptotics of the approximants, calculated through convolution, are
well behaved.

The general Green function matrix, appropriate for both disease-free and
endemic equilibria, is more involved and reads,

G(t) = e−Lt2
2M

 Z+ eMt2 + Z− e−Mt2 2
(

e−Mt2 − eMt2

)
(βs∗ + ξ)

2
(

eMt2 − e−Mt2

)
βi∗ Z+ e−Mt2 + Z− eMt2

Θ(t) ,

(6.29)
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with

Z± = M ±K (6.30a)

K = γ − ξ − β(s∗ + i∗) (6.30b)

L = γ + ξ + 2π − β(s∗ − i∗) (6.30c)

M2 = γ2 + [β(s∗ − i∗) + ξ]2 − 2γ(γ −K) . (6.30d)

The zeroth approximant (6.11) is the convolution of the matrix Green function
with the source vector ψ(t), i.e.,

X(0)(t) = (G ∗ψ)(t) =
∫
R
G(t− t′) [χΘ(t′) +Cδ(t′)] dt′ (6.31)

and results in the following expressions for the population fraction of susceptible
and infected individuals, respectively,

s(0)(t) = i0(βs∗ + ξ)
M

e−Lt/2
(

e−Mt/2 − eMt/2
)

+ s0

2M e−Lt/2
(
Z− e−Mt/2 + Z+ eMt/2

)
+ 2βs∗i∗(βs∗ + ξ)

M

(
(e−Lt/2 − e−Mt/2)

L−M
− (e−Lt/2 − eMt/2)

L+M

)

+ (βs∗i∗ + π(1− p) + ξ)e−Lt/2
M

(
Z− (eLt/2 − e−Mt/2)

L+M

)

+ (βs∗i∗ + π(1− p) + ξ)e−Lt/2
M

(
Z+ (eLt/2 − eMt/2)

L−M

)
(6.32)



86 SYSTEMS OF COUPLED DIFFERENTIAL EQUATIONS

i(0)(t) = s0βi
∗

M
e−Lt/2

(
eMt/2 − e−Mt/2

)
+ i0

2M e−Lt/2
(
Z− eMt/2 + Z+ e−Mt/2

)
− 2βi∗(βs∗i∗ + (1− p)π + ξ)eMt/2

M

(
(e−Lt/2 − e−Mt/2)

L−M

)

+ 2βi∗(βs∗i∗ + (1− p)π + ξ)eMt/2

M

(
(e−Lt/2 − e−Mt/2)e−Mt

L+M

)

− βs∗i∗

M
e−Lt/2

(
Z− (eLt/2 − eMt/2)

L−M
+ Z+ (eLt/2 − e−Mt/2)

L+M

)
. (6.33)

Upon inspection of this and higher approximants (not reported analytically here)
we infer that all BLUES approximants, regardless of the number of iterations
(n ≥ 0), are qualitatively correct asymptotically, for all RV 6= 1, in that they
converge exponentially rapidly towards the exact fixed point values for long
times, in contrast with the other methods which yield divergences.

We proceed to compare graphically the solution of the SIRS model calculated
with the BLUES method with a precise numerical solution and with approximate
solutions obtained by the ADM, the VIM, or HPM. In Table 6.1 the parameters
are shown for three different cases, together with the values for the vaccination
reproduction number RV and critical vaccination threshold pc. Depending on
the value of RV , we indicate in the last column of Table 6.1 the equilibrium
attained by the system.

Table 6.1: Parameters and corresponding equilibria for the 3 studied cases in the
SIRS model. The vaccination reproduction number RV and critical vaccination
threshold pc are also shown. Note that the latter exceeds unity in Case 2, which
is physically equivalent to setting it equal to unity. For all cases s0 = 0.8,
i0 = 0.2, r0 = 0, β = 0.8, γ = 0.03 and π = 0.4.

ξ p pc RV Equilibrium
Case 1 0.1 0.9 0.5781 0.5209 ε0 = (0.28, 0)
Case 2 0.5 0.9 1.0406 =⇒ 1 1.1163 εe = (0.5375, 0.0605)
Case 3 0.1 pc 0.5781 1 ε0 = (0.5375, 0)
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Case 1: small loss of immunity and high vaccination probability.

As a preliminary remark, we mention that for ξ = 0 (no loss of immunity) the
SIRS reduces to a SIR model with vaccination, which was treated earlier in
[65, 66] by means of the ADM, HPM and VIM. Here we consider the SIRS
model in which the protection offered by vaccination or post-disease immunity is
lost with a small rate ξ = 0.1 after some time. When the vaccination probability
p = 0.9 is higher than the critical vaccination threshold pc = 0.5781, the
disease will eventually die out and the system will reach the stable disease-free
equilibrium for which i → 0 and s → 0.28. This is shown in Fig. 6.2. As
we already discussed the BLUES method is accurate and captures the fixed-
point values (B.1a) of (s∗0, i∗0) in the equilibrium exactly. We remark that the
approximants generated by the ADM, VIM and HPM diverge uncontrollably
for longer times while the BLUES approximants converge globally for all t ≥ 0
and in every iteration.

Numerical
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Figure 6.2: Comparison between the numerical solution (red line), the fifth-
order VIM, ADM and HPM approximants (respectively, blue dotted, orange
dot-dashed and green dot-dash-dashed lines) and the third BLUES approximant
(black, dashed line) for Case 1 of the SIRS model: ξ = 0.1 and p = 0.9. Note that
the numerical solution and the third BLUES approximant are indistinguishable
at this resolution.

We also compare the BLUES approximants for different numbers of iteration
and notice that they converge rapidly towards the numerical solution. This is
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shown in Fig. 6.3.

Numerical

BLUES n = 0

BLUES n = 1

BLUES n = 2

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

t

P
o
p
u
la
ti
o
n
fr
a
c
ti
o
n

s(t)

i(t)

Figure 6.3: Internal comparison among BLUES approximants after zero (dashed
line), one (dot-dashed line) and two (dotted line) iterations. The numerical
solution is also shown (red line). This figure is for Case 1 of the SIRS model:
ξ = 0.1 and p = 0.9.

Case 2: high loss of immunity and high vaccination probability.

As a second example, we consider the case in which immunity is more easily lost
(ξ = 0.5) and the population is putting in an effort to vaccinate a larger number
of newborns (p = 0.9). We can deduce from the critical vaccination probability
pc = 1.0406 in Table 6.1 that even when all newborns are vaccinated, immunity
is lost so quickly that the population always reaches the endemic equilibrium
and the disease cannot be eradicated. The result of a comparison between the
VIM, ADM, HPM and BLUES method is shown in Fig. 6.4. We also compare
the BLUES approximants for different numbers of iteration and observe that
they converge rapidly towards the numerical solution. This is shown in Fig. 6.5.

Case 3: nonlinear relaxation at the dynamical critical point.

In this third example, we consider the dynamical criticality at RV = 1. The
population still reaches the disease-free equilibrium asymptotically, but much
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Figure 6.4: Comparison between the numerical solution (red line), the fifth-
order VIM, ADM and HPM approximants (respectively, blue dotted, orange
dot-dashed and green dot-dash-dashed lines) and the third BLUES approximant
(black, dashed line) for Case 2 of the SIRS model: ξ = 0.5 and p = 0.9.
Note that again the numerical solution and the third BLUES approximant are
indistinguishable at this resolution.
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Figure 6.5: Internal comparison among the zeroth-order BLUES approximant
(dashed line) and the first three iterations. The numerical solution is also shown
(red line). This figure is for Case 2 of the SIRS model: ξ = 0.5 and p = 0.9.
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more slowly since in the limit RV ↑ 1 the linear relaxation time diverges. The
“linear” exponential relaxation is replaced by a “nonlinear” algebraic one, with
leading behavior proportional to 1/t. This can be inferred exactly from an
analysis of the asymptotic behavior of the system of DEs (6.21), which at
RV = 1 reduces to,

s′(t) = π(1− p)− β(s(t)− s∗)i(t)− (π + ξ)s(t)− (ξ + βs∗)i(t) + ξ (6.34a)

i′(t) = β(s(t)− s∗)i(t) , (6.34b)

with, in this special case, s∗ = s∗0 = s∗e. Inspection of these DEs yields that the
leading asymptotic behavior is a 1/t power-law decay towards the fixed point,

s(t) = s∗ − 1
β t

+O(t−2) (6.35a)

i(t) = π + ξ

π + ξ + γ

1
β t

+O(t−2) , (6.35b)

which can be seen in Fig. 6.7, together with the n = 0, 2, 4 BLUES approximants
and the numerically exact solutions. In this Case, the BLUES approximants
approach the fixed point exponentially with the same linear relaxation time
(π + γ)−1 in every iteration while the exact solution approaches the fixed point
as a power law. As a consequence, the n = 4 BLUES approximant does not
coincide exactly with the numerical solution for larger times, in contrast with
Cases 1 and 2. This can be seen in Fig. 6.6, where a comparison between the
VIM, ADM, HPM and BLUES method is shown together with the numerical
solution.

We now calculate the time t = t̂ at which the peak of the infection occurs from
the BLUES approximants and compare with the numerically precise values. At
the infection peak, i′(t̂ ) = 0, and hence, using equation (6.15b), we deduce that
s(t̂ ) = (γ + π)/β. So, instead of trying to solve i′(t̂ ) = 0 directly, we can find
t̂ from the susceptible population fraction. The results are shown in Fig. 6.8.
The BLUES function method accurately captures the infection peak time, both
for the disease-free and the endemic equilibrium.

The cumulative fraction of infected individuals A(t) is the integral of i(t). In
the disease-free equilibrium this fraction decays to zero and hence the integral
is finite. We now inspect this quantity analytically and numerically in the
framework of the BLUES approximants. For the zeroth-order approximant
(6.33), A0(t) is given generally by

A(0)(t) =
t∫

0

i(0)(t′)dt′ = i0
(π + γ)(1−RV )

(
1− e−(π+γ)(1−RV )t

)
, (6.36)
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Figure 6.6: Comparison between the numerical solution (red line), the fifth-
order VIM, ADM and HPM approximants (respectively, blue dotted, orange
dot-dashed and green dot-dash-dashed lines) and the fourth BLUES approximant
(black, dashed line). This figure is for Case 3 of the SIRS model: RV = 1.

which is valid for both the disease-free and endemic fixed points. In the latter
case, A(t) is an increasing function of time for all t > 0.

It is now easy to see that for the disease-free equilibrium (RV < 1), the
exponential decays to zero for t→∞ and the zeroth-order cumulative fraction of
infected individuals saturates at the finite limiting value A(0)

∞ = limt→∞A(0)(t),
i.e.,

A(0)
∞ = i0

(π + γ)(1−RV ) . (6.37)

For Case 1 this results in the value A(0)
∞ = 0.970874. The numerically exact

value in this case is A(num)
∞ = 1.28687. We can obtain a better approximation

by integrating the first-order solution i(1)(t), i.e.,

A(1)
∞ = i20β(ξ +RV (π + γ))

2(π + γ)2(1−RV )2 ((π + γ)RV − (γ + ξ + 2π))

+ i0 [s0β + (γ + ξ + 2π)− 2RV (π + γ)]
(1−RV )(π + γ) [(γ + ξ + 2π)−RV (π + γ)] ,

(6.38)
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Figure 6.7: Internal comparison among BLUES approximants after zero (dashed
line), two (dot-dashed line) and four (dotted line) iterations. The numerical
solution is also shown (red line) together with its exact asymptotic behavior (a
power-law decay). This figure is for Case 3 of the SIRS model: RV = 1.

which results in the numerical value of A(1)
∞ = 1.36991. The different

approximants for the cumulative fraction of infected individuals for Case 1
are compared with the numerical solution in Fig. 6.9.

6.1.4 The SEIRS model with constant vaccination

We will now digress somewhat from the SIRS model and briefly study a well-
known extension: the SEIRS model. In this extension to the original SIRS
system, individuals do not directly transition from the group of susceptibles (S)
to the group of infected (I). Instead, they first pass through a phase of being
exposed to the disease before becoming sick. Therefore, the new compartment
is called the group of exposed individuals (E) and they become sick with a rate
σ, moving them to the group of infected individuals. These dynamics are shown
in Fig. 6.10.
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Figure 6.8: Comparison between the numerically precise time of the infection
peak t̂ in the SIRS model and the values calculated using the nth BLUES
approximants (n = 0, 1, 2, 3) for Case 1 (black dot-dashed line and black
squares), 2 (blue dotted line and blue triangles) and 3 (red dashed line and red
circles). For Case 3, the n = 4 approximant is also calculated.

The system of nonlinear differential equations describing the time-evolution of
the normalised populations is then

s′(t) = π(1− p)− βs(t)i(t)− πs(t) + ξr(t) (6.39a)

e′(t) = βs(t)i(t)− (σ + π)e(t) (6.39b)

i′(t) = σe(t)− (γ + π)i(t) (6.39c)

r′(t) = πp+ γi(t)− (π + ξ)r(t) , (6.39d)

with e = E/N the normalized population of exposed individuals, where now
the total population is N = S + E + I +R.

Adding a new compartment and new interactions to the model changes the
vaccination reproduction number and critical vaccination threshold, which
we will now denote with superscript (SEIRS), i.e., the reproduction number
becomes

R
(SEIRS)
V = βσ (π(1− p) + ξ)

(π + γ)(π + σ)(π + ξ) = σ

(π + σ)R
(SIRS)
V . (6.40)
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Figure 6.9: The cumulative fraction of infected individuals A(t) approximated
by the the first four BLUES approximants (black lines) together with the
numerical result (red, full line) for Case 1. The numerically calculated saturated
value of A∞ = 1.28687 is also shown.
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Figure 6.10: The SEIRS model with vaccination, immunity loss and natural
deaths.

Note that the reproduction number for the SEIRS model is linearly related to
the one in the SIRS model (6.16). However, the critical vaccination threshold
is now

p(SEIRS)
c =

(
ξ

π
+ 1
)(

1− (γ + π)(σ + π)
βσ

)
. (6.41)

We can obtain the critical vaccination threshold for the SIRS model (6.17) by
noticing that if the average incubation time τinc = 1/σ an individual spends in
the exposed category is reduced to zero, the exposed class is effectively removed
and the SEIRS model reduces to the SIRS model. This can be achieved by
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letting the rate σ tend to infinity, i.e.,

lim
σ→∞

p(SEIRS)
c = p(SIRS)

c . (6.42)

In the following discussion, we will omit the superscript (SEIRS). No confusion
should arise from this choice.

Global stability properties of the SEIRS model will not be discussed here, but
it can be shown [67, 68] that both the disease-free and endemic equilibria are at
least locally stable, respectively when the disease dies out and when the disease
reaches the endemic equilibrium, depending on the value of RV .

We can once again carefully choose the linear operator in such a way that it
includes both the disease-free and endemic equilibrium. To this end, we first
substitute the constraint s+ e+ i+ r = 1 to eliminate r and reduce the system
to a three-dimensional subsystem. Next, we rewrite the nonlinear term as was
done in equation (6.21), i.e.,

s′(t) = π(1− p)− β(s(t)− s∗)(i(t)− i∗)− (π + ξ − βi∗)s(t)

− (ξ + βs∗)i(t)− ξe(t) + ξ + βs∗i∗ (6.43a)

e′(t) = β(s(t)− s∗)(i(t)− i∗)− (π + σ)e(t) + βi∗s(t) + βs∗i(t)

− βs∗i∗ (6.43b)

i′(t) = σe(t)− (π + γ)i(t) . (6.43c)

Next, we can calculate approximants to the solution of (6.39) by using the
BLUES method outlined in Section 6.1.3. The exact fixed-point values and
detailed calculations for the set-up of the BLUES method for the SEIRS model
are performed in appendix B.3. We treat here only two cases, for which the
parameter values are indicated in Table 6.2.

Case 1: small loss of immunity and high vaccination probability

We first consider the situation in which the vaccination probability is high
and there is some loss of immunity (RV < 1). The systems reaches the stable
disease-free equilibrium (B.13a). If we compare Figures 6.2 and 6.11, we see that
the infected population fraction in the SEIRS model first decreases and only
later reaches a maximum, while the SIRS model only reaches a maximum. This
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Table 6.2: Parameters and corresponding equilibria for the two cases in the
SEIRS model. The vaccination reproduction number RV and critical vaccination
threshold pc are also shown. For all cases s0 = 0.8, e0 = 0, i0 = 0.2, r0 = 0,
β = 0.8, γ = 0.03, π = 0.4, ξ = 0.1 and σ = 5.

p pc RV Equilibrium
Case 1 0.9 0.5244 0.4823 ε0 = (0.28, 0, 0)
Case 2 0.3 0.5244 1.3092 εe = (0.5805, 0.0135, 0.1566)

can be explained by the fact that the first newly infected individuals initially
go through an incubation period before becoming sick and entering the i(t)
compartment. Meanwhile, a fraction of the initially sick population recovers,
reducing i(t). The BLUES function method is able to reproduce the solutions
almost exactly and seems to converge globally, while the VIM, ADM and HPM
diverge even for small times.
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Figure 6.11: Comparison between the numerical solution (red line), the second-
order BLUES method solution (black, dotdashed line) and the fifth-order ADM,
VIM and HPM approximants (respectively orange dot-dashed, blue dotted and
green dot-dash-dashed lines) for Case 1 of the SEIRS model.
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Case 2: small loss of immunity and low vaccination probability

As a final example, we assume that the vaccination probability decreases to
p = 0.3 such that the disease now reaches the endemic equilibrium (B.13b),
with RV > 1. Once again, the infected fraction of the population in the SEIRS
model first reaches a local minimum before reaching its peak. Already in first
order, the BLUES function method generates a very accurate approximation
for the exact solution while the other methods diverge quickly.
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Figure 6.12: Comparison between the numerical solution (red line), the first-
order BLUES method solution (black, dotdashed line) and the fifth-order ADM,
VIM and HPM approximants (respectively orange dot-dashed, blue dotted and
green dot-dash-dashed lines) for Case 2 of the SEIRS model.

We refrain from comparing the different BLUES approximants because the first
and second orders are already indistinguishable from the numerically exact
solution.

We now conclude the discussion of coupled ODEs and move on the coupled PDEs
resulting from either ab initio physical systems or by converting higher-order
PDEs into a system of coupled first-order nonlinear PDEs.
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6.2 Higher-order time derivatives

For nth-order time derivatives the BLUES approach can be extended to include
the initial conditions of the derivatives of the solution. We propose the following
approach: the nth-order in time nonlinear PDE

Ñt,x u = χ(x, t) (6.44)

with source χ(x, t) can be decomposed into n first-order coupled PDEs where
the initial conditions for the solution and the derivatives can be included as
sources in their respective constituent equations by a suitable multiplication
with a point source at t = 0. The BLUES method can subsequently be applied
to the system of first-order in time equations.

For equation (6.44), this system can be written as a nonlinear operator Nt,x
acting on a vector of solutions U = (U1, U2, ..., Un), i.e.,

Nt,xU(x, t) = ψ(x, t), ∀t > 0 (6.45)

wherein U1 = u, U2 = ∂u/∂t, ..., Un = ∂nu/∂tn. The initial conditions for t = 0
are collected in the vector C,

U(x, 0) = C(x) . (6.46)

Now, ψ(x, t) = (0, ..., χ(x, t)) is a vector of length n that contains the external
source in the last entry and zeroes everywhere else. We now judiciously
decompose the nonlinear operator Nt,x into a linear operator Lt,x , which
contains at the highest a first derivative in time as a consequence of the
decomposition, and a residual operator Rx , i.e., Rx ≡ Lt,x − Nt,x , which
contains at least the nonlinear part of Nt,x . Thus the action of the linear
operator on U results in the following associated linear coupled system

Lt,xU = U t −AU = ψ, ∀t > 0 (6.47)

We now propose to rewrite the system of DEs in an equivalent form by
incorporating the initial condition by multiplying C with a Dirac delta source
δ(t) located at t = 0 and including this term on the right-hand-side of the
inhomogeneous system, i.e.,

Lt,xU = U t −AU = ψΘ +C(x)δ ≡ ϕ, ∀t ≥ 0 (6.48)

where we have combined the external source ψΘ and the “initial condition
source” Cδ into the combined source ϕ.
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The solution of this linear system (6.48) is the following convolution integral

U(x, t) = (G ∗ϕ)(t)

= G(t)C(x) +
∫ t

0−
G(t− t′)ψ(x, t′)Θ(t′)dt′, ∀t > 0

(6.49)

where G(t) is the Green function matrix for the inhomogeneous linear system.
This object can be calculated by finding the matrix exponential exp(At) ≡
1+At+ ..., i.e.,

G(t) = eAtΘ(t) . (6.50)

This Green function matrix solves the linear system with a delta function unit
matrix source, i.e., it is a solution of the matrix equation

Gt −AG = δ(t)1, ∀t ≥ 0 . (6.51)

Adopting the BLUES function strategy, a solution to the nonlinear system
(6.45) is now proposed in the form of a convolution U(x, t) = (B ∗ φ)(x, t), in
which the function B(t), named BLUES function, is taken to be equal to the
Green function of the chosen related linear system, i.e., B(t) ≡ G(t) and the
new (combined) source φ(x, t) is to be calculated by systematic iteration, using
the given (combined) source ϕ(x, t). This procedure starts from the following
implicit equation, which makes use of the action of the residual operator,

Rx (B ∗ φ) = Lt,x (B ∗ φ)−Nt,x (B ∗ φ)

= φ−ϕ .
(6.52)

To find the solution to the nonlinear system (6.45), equation (6.52) can be
iterated to calculate an approximation for φ in the form of a sequence in powers
of the residual Rx . By subsequently taking the convolution product with B(t),
approximate solutions U (n)

ψ (t) to (6.45) can be found, i.e.,

U
(n)
φ (x, t) = (B ∗ φ(n))(x, t) = U

(0)
φ (x, t) +

(
B ∗ RxU (n−1)

φ

)
(x, t) , (6.53)

where
U

(0)
φ (x, t) = (B ∗ φ(0))(x, t) = (B ∗ϕ)(x, t). (6.54)

is the zeroth-order convolution product where the sources φ(0)(x, t) and φ(x, t)
are identical.

We can now continue our discussion with an application to a second-order
nonlinear PDE.
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6.2.1 BLUES function method for the nonlinear telegrapher
equation

The linear telegrapher equation with α, c ∈ R

utt(x, t) + αut(x, t)− c2uxx(x, t) = 0 (6.55)

is used in a broad spectrum of scientific disciplines, ranging from electrical
transmission in cables to the statistical mechanics of active matter [69, 70] and
mathematical biology [71, 72]. Equation (6.55) interpolates between the wave
equation (α→ 0 with c fixed ) and the diffusion equation (α→∞ and c→∞,
with c2/α→ D constant) and has the advantage of having a finite propagation
speed for disturbances, in contrast to the infinite disturbance propagation speed
for the diffusion equation [73]. For the remainder of this work we will assume
c = 1 without loss of generality.

We now consider the telegrapher equation with a quadratic nonlinearity and
constant forcing, i.e.,

Ñt,x u = ∂2u

∂t2
+ α

∂u

∂t
− c2 ∂

2u

∂x2 + u2 = 1

u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x)

(6.56)

where f(x) and g(x) are the initial conditions for respectively u(x, t) and the
time derivative ut(x, t). We will now attempt to generate approximate solutions
to equation (6.56) using the formalism developed in section 2.1.

We can convert this second-order PDE (6.56) into two coupled first-order PDEs
by introducing v = ∂u/∂t, i.e.,

∂u

∂t
= v

∂v

∂t
= ∂2u

∂x2 − αv − u
2 + 1

(6.57)

We can rewrite the system (6.57) with solution vector U = (u, v)ᵀ such that it
has the form required by the matrix BLUES function method (6.45),

Nt,xU(x, t) = ϕ(x, t) , (6.58)
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where the linear operator Lt,xU , residual RxU and source vector ϕ are given
by the following expressions

Lt,xU =
(
ut

vt

)
−A

(
u

v

)
ϕ = δ(t)

(
f(x)
g(x)

)
+
(

0
1

)

RxU =
(

0
uxx − u2

) (6.59)

The matrix of coefficients A of the linear operator is

A =
(

0 1
0 −α

)
(6.60)

and hence the matrix Green function for the linear operator is the matrix
exponential G(t) = exp{(At)}Θ(t), i.e.,

G(t) =
(

1 1−e−αt
α

0 e−αt

)
Θ(t) , (6.61)

where Θ(t) is the Heaviside step function.

We can now set up the BLUES iteration procedure. The nth approximant for
the solution of (6.57) is calculated by

U (n)(x, t) = U (0)(x, t) +
∫ t

0−
G(t− s)RxU (n−1)(x, s)ds (6.62)

where U (0)(x, t) is the zeroth approximant and is defined as the convolution
product of the Green function and the source ϕ(x, t), i.e,

U (0)(x, t) =
(
f(x) + t

α
+ 1− αg(x)

α2 (e−αt − 1), 1
α
− 1− αg(x)

α
e−αt

)ᵀ

(6.63)
For initial conditions f(x) = 1 + sin(x) and g(x) = 0, the zeroth approximant
becomes (for α = 1),

U (0)(x, t) =
(
t+ sin(x) + e−t, 1− e−t

)ᵀ
. (6.64)

Note that when a higher-order PDE is converted to a system of coupled PDEs,
the residual is zero in the individual channels of the “new” variables, i.e.,
the derivatives. The matrix formalism therefore decouples into individual
integrations of the elements in the last column of the Green function matrix
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with the residual applied to the previous approximant for the solution u(x, t).
Hence, it is only necessary to perform the integration corresponding to the
channel for the solution u(x, t) and not for all the derivatives. However, this is
not the case when the system is a priori coupled and the Green matrix and
residual are nontrivial.

In Figs. 6.13 and 6.14, we compare the approximate solutions of the matrix
BLUES method, VIM, ADM, HPM and GVIM for α = 1, with initial conditions
f(x) = 1 + sin(x) and g(x) = 0. In Fig. 6.13, the spatial profile of the
approximants is shown for a fixed time t = 1. It is clear that the matrix BLUES
function method outperforms the VIM, ADM and HPM and is comparable
to the GVIM. This is confirmed in Fig. 6.14, where the time evolution of the
approximants for fixed position x = −π/2 is shown. Note however that all of
the implemented methods diverge for t→∞. The accuracy can be increased
by considering higher-order iterations.
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Figure 6.13: A comparison is made between the numerical solution of equation
(6.56) (red, full line), the matrix BLUES method (black, dashed line), the VIM
(blue, dot-dashed line), ADM (green, dotted line), the HPM (brown, dot-dash-
dashed line) and the GVIM (yellow, dot-dot-dashed line). The time is fixed at
t = 1.

Note that while all of the methods can quite accurately reproduce the spatial
profile at the global minima, the behaviour differs significantly in the region
where the maxima and local minima occur (e.g., around x = π/2). The VIM,
ADM, HPM, GVIM and the BLUES function method succeed in reproducing a
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(local) minimum at the correct coordinates at a fixed time t = 1, albeit with
varying degrees of success.
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Figure 6.14: A comparison is made between the numerical solution of equation
(6.56) (red, full line), the matrix BLUES method (black, dashed line), the VIM
(blue, dot-dashed line), ADM (green, dotted line), the HPM (brown, dot-dash-
dashed line) and the GVIM (yellow, dot-dot-dashed line). The position is fixed
at x = −π/2.

To study the time evolution of the approximants more closely, we first average
the solutions over one period to eliminate spatial dependency. Hence, we study
the following time-dependent function

µ(t) = 1
2π

∫ π

−π
u(x, t)dx (6.65)

for all of the above methods. This is shown in Fig. 6.15. In Fig. 6.16,
the consecutive matrix BLUES method approximants for n ∈ {0, 1, 2, 3} are
compared with the numerical solution at t = 1. Note that the local minimum
around x = π/2 is reproduced in third order.
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Figure 6.15: Time evolution of the one-period averaged approximants (6.65) of
the solution of equation (6.56). A comparison is made between the numerical
solution of equation (6.56) (red, full line), the matrix BLUES method (black,
dashed line), the VIM (blue, dot-dashed line), ADM (green, dotted line), the
HPM (brown, dot-dash-dashed line) and the GVIM (yellow, dot-dot-dashed
line).
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Figure 6.16: Spatial plot of the solution of the nonlinear telegrapher equation
(6.56) for a fixed time t = 1. A comparison is made between the numerical
solution (red, full line) and the n ∈ {0, 1, 2, 3} matrix BLUES method
approximants (black lines).



Chapter 7

Hierarchical deposition
models

In this chapter we first study a model for the hierarchical random deposition
(HRDM) of debris onto a flat substrate. We calculate the number of coastal
points and the percolation probability. From these calculations, we deduce a
connection between these two seemingly unrelated quantities. Furthermore, we
briefly comment on surface roughness properties. Next, we extend the rules
of the model to include lateral adhesion of incoming particles, transforming
the model into the hierarchical ballistic deposition process (HBDM). We study
the void fraction or porosity, the surface length increment and the roughness
exponents analytically and by means of numerical simulations.

The first part of this chapter, i.e., the hierarchical random deposition model,
is based on the article “Coastlines and percolation in a model for hierarchical
random deposition” that appeared in Physica A: Statistical Mechanics and its
Applications [74]. It builds upon earlier work of Evi Bervoets and Claudiu
V. Giuraniuc (University of Aberdeen) who performed the initial calculation
of the number of coastal points. The hierarchical ballistic deposition model
calculations and numerical simulations are based on my most recent research
on this topic.

105
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7.1 Logarithmic fractals

While both Euclidean and fractal geometry are well-known to physicists and
mathematicians, the borderline case where the Hausdorff-Besicovitch dimension
Df equals the topological (or Euclidean) dimension D has received much less
attention in the literature. A subset of these cases can be characterised by the
fractal measure h with ruler length ρ

h(ρ) = ρDf [log (1/ρ)]∆1 , with Df = D, (7.1)

where ∆1 is a subdimension [75]. The occurrence of the logarithm in the
fractal measure has led researchers [76] to coin the term logarithmic fractals.
These objects can be distinguished from classical fractals by observing that
quantities such as length and area increase linearly instead of exponentially,
upon decreasing the “ruler length”. The same research has shown that the
logarithmic fractal behaviour of a basic model for hierarchical deposition is
robust under randomness and that the surface length or area, asymptotically
for large generation number, increases by a constant.

One can study level sets for random hierarchical deposition on a Euclidean
substrate of dimension D and the resulting collection of points or contour lines,
which are, respectively, named coastal points and coastlines for D = 1 or D = 2
[77]. This nomenclature stems from the context of islands, which result when
the landscape is flooded up to a certain level, and is useful for describing the
geometry of their jagged beaches. Real-world applications of fractal level sets
come to mind when considering such geometries, some examples include the
flooding of Arctic melt ponds [78] or the fractal growth of thin metallic films
[79] or of bacterial populations [80, 81].

The study of level sets is deeply connected to the theory of percolation [82, 83],
in which the geometry of the system under consideration changes drastically
when the deposition probability reaches a critical value named the percolation
threshold. When percolation is achieved, one expects the behaviour of the
number of coastal points/coastlines to change. We will show that in the random
hierarchical deposition model the percolation threshold indicates a transition
from a Euclidean to a fractal geometry. Exactly at the percolation threshold,
however, the number of coastal points exhibits a logarithmic fractal behaviour,
growing linearly with increasing generation number.
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7.2 Hierarchical random deposition

In this section we recapitulate briefly the setup and some of the elementary
properties of the hierarchical deposition model in the situation when the
substrate dimension is D = 1 (and D = 2). Let us consider the deposition
of squares (or the digging of square holes) on a line [0, 1] which fall down in
a temporal order determined by their size. The largest ones fall down first,
followed by squares of which the sides are smaller by a factor λ. We assume a
hyperbolic distribution of the number of squares deposited according to their
size. The number of squares of linear size s is denoted by N(s) and obeys the
following scaling,

N(s) = λ−1N(s/λ) (7.2)
where λ ∈ R+ and λ > 1. One can see that the number of squares is proportional
to the inverse impact cross-section. In this model [76, 77] a logarithmic fractal
law was found for the surface (length) of the resulting landscape. An illustration
of this landscape is shown in Fig. 7.1. Note that it resembles a skyline of a city
[84], with the characteristic urban morphology of the different building layers.

Figure 7.1: Resulting landscape for the HRDM with λ = 3, P = 0.5 and Q = 0
after six generations.

Let us first recapitulate the above model for random deposition, as was
investigated in [76]. First, divide the unit interval in λ subsets of length
1/λ, where now λ ∈ N and either deposit a square “hill” in each of the subsets
with probability P or dig a square “hole” with probability Q, which reduces
the height with a factor λ. The third option is to do nothing with probability
1− S ≡ 1− (P +Q). In the second generation (n = 2) we divide each of the
subsets of the previous generation in smaller subsets with length 1/λ2 and start
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depositing blocks or digging holes once again. This process can be repeated
indefinitely and the resulting asymptotic fractal properties for the generation
number n→∞ can be studied.

It has been shown in [76] that for λ ≥ 3, the asymptotic surface length increment
∆L∞ for infinite generation number n has the following form

∆L∞ = 2 [P (1− P ) +Q(1−Q)]
1 + 2 [P (1− P ) +Q(1−Q)− PQ] /(λ− 1) , (7.3)

while for λ = 2, partial levelling of vertical segments of the landscape increases
the resulting surface length increment somewhat [76].

These results are easily extended to one substrate dimension higher [76]. The
main difference with respect to the situation for D = 1 is that in D = 2 the
number of cubes of linear size s is inversely proportional to their cross-sectional
area s2, i.e.,

N(s) = λ−2N(s/λ) (7.4)
and that in generation n a wall that was put in generation m occupies λn−m
edges. The surface is now divided into square plaquettes. Neighbouring
plaquettes share an edge. In generation n there are λ2n plaquettes and twice
as many edges. After a careful inspection and calculation one concludes that
the (dimensionless) area increment for D = 2 obeys a law similar to that which
is satisfied by the (dimensionless) length increment for D = 1. The substrate
directions manifest themselves as independent. Consequently, in dimensionless
units of reduced area, ons obtains twice the result of equation (7.3) for D = 2,
i.e., the area increment is related to the length increment through [76],

∆S∞ = 2∆L∞ . (7.5)

7.2.1 Coastal points and non-universality

A richer variety of phenomena appears when level sets of the deposition model
are studied [77]. We define a “sea level” in the landscape and study the geometry
of the coastal points in D = 1 (or coastlines in D = 2) that remain. If the
substrate upon which the squares are placed is a line, the level set at sea level
is the number of coastal points. For D = 2, i.e., the substrate is planar, the
level set is the total length of the coastlines of the resulting islands. In the
following discussion, we choose the sea level to be close to the zero level of the
substrate. We will present here the case for the one-dimensional model in which
the substrate is a line, generalization to higher dimensions is straightforward.

Consider the unit interval [0, 1] with rescaling factor λ ≥ 2 and probabilities
P,Q, respectively, to deposit a hill or dig a hole. In generation n, we will call a
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coastal point a meeting point at sea level between two segments of length λ−n,
one of which supports a newly placed hill above sea level and the other marking
a newly dug hole below sea level or being a segment that has remained at sea
level, and vice versa, as shown in Fig. 7.2. Points that are created and are
not coastal points we call internal points. Points that remain from a previous
generation without being coastal or internal points are called external points.

Figure 7.2: Definition of coastal points. The dotted line indicates sea level,
while full lines represent either a hill or a hole. The coastal points are drawn as
orange squares.

New coastal points can be created in generation n in a number of different ways
[85, 86]:

1. Internal points are formed in generation n on a segment which was at
sea level in generation n− 1, see Fig. 7.3. These internal points from all
previous generations generate on average the following number of coastal
points

λ(λ− 1)(1− S)
n∑
i=2

[λ(1− S)]i−2 2P (1− P ) . (7.6)

2. External points at sea level that did not experience any deposition up
until generation n− 1, see Fig. 7.4.
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Figure 7.3: Creation of coastal points (orange squares) in generation n (right)
by deposition on internal points (black circles) that were still at sea level in
generation n− 1 (left).

Figure 7.4: Creation of coastal points (orange square) in generation n (right)
by deposition on external points (black squares) that were still at sea level in
generation n− 1 (left).

These external points generate on average

λ

n∑
i=1

[
(1− S)2]i−1 2P (1− P )

+ λ(λ− 1)(1− S)3

(
n∑
k=3

k∑
i=3

λk−i(1− S)k−6+i

)
2P (1− P )

(7.7)

coastal points in generation n.

3. External points at sea level which at generation n− 1 connect a segment
at sea level with a hole. Placing a hill on sea level next to the hole in
generation n creates the coastal point, see Fig. 7.5. This procedure yields
the following number of coastal points

2λQ(1− S)
(

n∑
k=2

k∑
i=2

λk−i(1− S)k−4+i

)
P . (7.8)
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Figure 7.5: Creation of coastal points (orange squares) in generation n (right)
by deposition on external points (black squares) which at generation n− 1 (left)
connect a segment at sea level with a hole.

Coastal points can also be destroyed in generation n by placing a smaller hill
on a sea level segment right next to an existing hill, hereby lifting the point.
This is illustrated in Fig. 7.6. On average, the number of coastal points that

Figure 7.6: Destruction of coastal points (orange squares) in generation n− 1
(left) by deposition of a smaller hill on sea level, lifting the point in generation
n (right).

get destroyed in generation n is equal to

2λP (1− S)
(

n∑
k=2

k∑
i=2

λk−i(1− S)k−4+i

)
P . (7.9)

Finally, adding equations (7.6), (7.7), (7.8) and subtracting equation (7.9)
results in a complete expression for the number of coastal points Nn(P,Q) in



112 HIERARCHICAL DEPOSITION MODELS

generation n as a function of the deposition probabilities P and Q,

Nn(P,Q) = λ

n∑
i=1

[
(1− S)2]i−1 2P (1− P )

+ λ(λ− 1)(1− S)
n∑
i=2

[λ(1− S)]i−2 2P (1− P )

+ 2λ(Q− P )(1− S)
(

n∑
k=2

k∑
i=2

λk−i(1− S)k−4+i

)
P

+ λ(λ− 1)(1− S)3

(
n∑
k=3

k∑
i=3

λk−i(1− S)k−6+i

)
2P (1− P ) .

(7.10)

The number of coastal points (7.10) for generation n = 10 are shown in Fig. 7.7
for λ = 2 and Q = 0.2 together with numerical results from simulations which
were performed using direct simulation with a random number generator. The
sums in expression (7.10) can be worked out exactly and the expression can be
simplified. The details of these calculations can be found in the appendix C.
From these calculations one can distinguish three regimes for the number of
coastal points:

• Euclidean regime for λ(1 − S) < 1. Here the number of coastal points
saturates to a constant value γ, see equation (C.2).

• Fractal regime with nontrivial fractal dimension 0 < Df < 1 for λ(1−S) >
1. In this regime the number of coastal points increases exponentially.

• Logarithmic fractal regime at λ(1− S) = 1. The number of coastal points
increases linearly with increasing generation n.

This non-universality of the coastal points is in sharp contrast with the universal
fractal properties of the surfaces described in Section 7.2, which are always
marginally fractal, independent of the model parameters. Note that the term
“(non)-universality” does not pertain to a universality class but is merely a
linguistic choice to describe this behaviour. In two dimensions (D = 2), the
previously obtained expression for the number of coastal points (7.10) is to
be multiplied by a factor 2 in order to obtain the (dimensionless) length of
the coastline. This can easily be verified by noticing that in each generation a
number of 2λ(λ− 1)(λj−1)2 become available and the size reduction is λ−j . In
Fig. 7.8, a two-dimensional cityscape is shown where the volume underneath
height h = 0 is “flooded” to show the formation of islands and coastlines.
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Figure 7.7: The number of coastal points N10(P, 0) in generation n = 10 for
λ = 2 and Q = 0.2. The numerical results are shown (black dots) together with
the theoretical prediction (7.10) (blue, dashed line). The numerical results were
averaged over 20000 runs.

The fractal dimension Df can be calculated by considering the increase of the
number of coastal points with increasing generation number n, i.e.,

Df = lim
n→∞

lnNn(P,Q)
lnλn = ln [λ(1− S)]

lnλ = 1 + ln (1− S)
lnλ (7.11)

for deposition on a line. When the substrate is planar (D = 2), the above
expression (7.11) is augmented by 1. This gives, respectively, 0 < Df < 1 and
1 < Df < 2 for deposition on a line or on a plane.

7.2.2 The critical exponents of the resulting surface

We now calculate the comparative surface roughness exponent [87] α by
considering the following height-height correlation function [86, 88]

〈(h(x)− h(x+ r))2〉 ∝ r2α . (7.12)

At distances r > λ−1, since the deposition probabilities are independent, there
is no possible dependence of the height difference on r and 〈∆h2〉 has a value
which is given only by all the possible combinations: hole-hill, hole-nothing,
hill-nothing. With increasing number of generations the number of combinations
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Figure 7.8: Cityscape created by “flooding” the λ = 3, n = 4 landscape to
a height h = 0 (left panel) and a top-down view of the resulting islands and
coastlines (right panel). Parameters are P = 0.5 and Q = 0.3.

at each site increases; the height difference also increases but saturates as well
to a value proportional to the total height (or depth). For shorter distances
r < λ−1 there are two possibilities for the height after the first generation:
either they can be the same or differ by λ−1 or 2λ−1, depending on whether
the two points separated by r are on the same block or not. The r-dependence
of the height originates from the probability whether two points separated by a
distance r are on the same block or not, and this probability is proportional
to r. Hence, 〈∆h2〉 ∼ r. A similar reasoning can be made for λ−2 < r < λ−1

and for all the other intervals. We can conclude that α = 1/2 but that the
slope changes at λ−1, λ−2, λ−3 and so on. Hence, a fine structure emerges
in the correlation, where the time evolution can be interpreted as successive
magnifications, revealing more and more of this structure. This is shown in
Figures C.3 and C.4 in the appendix C for respectively λ = 3 and λ = 2.

We have calculated the value of the roughness exponent α for P = 0.7, Q = 0
and λ = 3 in generation n = 6, which results in α = 0.4935± 0.0006 and which
is close to the theoretically predicted value of 1/2. It should be noted that
this roughness exponent is a power law of the length from the beginning of the
deposition process and consequently there is no initial growth that can be found
as a power law of time. Hence, exponents β or z are nonexistent in this model.

These results are in stark contrast with the well-known models of random
deposition and ballistic deposition where the exponents β and z do exist [2,
3, 89, 90]. In these deposition models it is assumed that all of the particles
are of unit size and identical. While there have been studies on properties of
surfaces resulting from the deposition of particles with varying size [91], none
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consider the hyperbolic scaling and the simultaneous increase of the number
of columns on the substrate. There are two fundamental differences between
the current model model and these preexisting models. First, the former model
is synchronous, meaning that all columns are visited simultaneously (i.e., in
one generation), while other deposition models consider one particle being
deposited at a time, updating time t → t + 1 when on average each column
has been visited once. In the HRDM model, the probabilities P and Q control
the number of deposition events in one generation. Second, in the HRDM, the
number of available columns increases as λn for increasing generations n. This
signifies that we cannot define a uniform “time” such as for the regular random
deposition that is studied in the literature.

7.2.3 Percolation in the one-dimensional HRDM

Consider the hierarchical deposition model where now the hills are made of
some conductive material such as copper or zinc, and an electric current is
allowed to pass through the system from end to end. The substrate is assumed
to be a perfect insulator. We now investigate whether a current is able to flow
between the two endpoints and when a spanning cluster of conducting hills
appears for the first time. This turns out to be connected to the discussion
of the previous section(s). We only consider percolation on a one-dimensional
substrate. In [92], the calculation for a two-dimensional substrate is performed
in a real space renormalization group approach.

Percolation manifests itself when an uninterrupted chain of conducting hills is
placed between the left and right sides of the unit interval [0, 1]. This can be
realised in every generation n > 0. Note that when in generation n a hole is
dug on a segment which did not experience any deposition up to order n− 1,
percolation is made impossible for every generation number exceeding n. The
probability to have reached percolation in generation n or earlier is denoted
by Pn(P,Q). We give here the example of λ = 3 but the results are valid for
general λ ≥ 2.

• Percolation in n = 0 will be nonexistent. We assume the substrate
is initially flat and has not experienced any deposition. Hence, by
construction, P0(P,Q) = 0.

• Percolation in n = 1. The only possibility for percolation already in the
first step is when all λ = 3 lattice sites are filled. So, P1(P,Q) = P 3.

• Percolation in n = 2. Here are three possibilities: either 0, 1 or 2
hills have been deposited in the first generation, as shown in Fig.7.9.
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The total percolation probability is the probability that percolation has
already occurred in the previous generation added to the probability that
percolation occurs in this generation, i.e.,

P2(P,Q) = P 3 + 3P 2(1− S)P 3 + 3P (1− S)2P 6 + (1− S)3P 9 . (7.13)

(a) (b) (c)

Figure 7.9: (a) A possible configuration in which percolation is achieved when
two blocks were deposited in n = 1, with associated probability 3P 2(1− S)P 3.
(b) Possible percolation when one block has been deposited, with probability
3P (1 − S)2P 6. (c) Possible percolation when no blocks have been deposited,
with probability (1− S)3P 9.

• Percolation in n = 3. Some of the different possibilities are shown
graphically in the appendix C. The percolation probability is

P3(P,Q) =
3∑
k=0

(
3
k

)
P 3−k(1− S)k

3k∑
i=0

(
3k
i

)
P 3k−i(1− S)iP 3i

=
3∑
k=0

3k∑
i=0

(
3
k

)(
3k
i

)
P−(k+i)(1− S)k+iP 3(k+i) .

(7.14)

For general λ, the probability of percolation in n = 3 is given by

P3(P,Q) =
λ∑
k=0

(
λ

k

)
Pλ−k(1− S)k

λk∑
i=0

(
λk

i

)
Pλk−i(1− S)iPλi

=
λ∑
k=0

λk∑
i=0

(
λ

k

)(
λk

i

)
P−(k+i)(1− S)k+iPλ(k+i) .

(7.15)

This can now be repeated for general n and λ to result in the following expression
for the percolation probability

Pn(P,Q) = Pλ
λ∑

k1=0

λk1∑
k2=0
· · ·

λkn−2∑
kn−1=0

k1∏
i=kn−1

(
λki−1

i

)[
Pλ−1(1− S)

]n−1∑
j=1

kj

.

(7.16)
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The nested summations in (7.16) indicate the strong memory effect pertaining
to the history of deposition in previous generations. Working out the above
expressions explicitly starting with P0 = 0 gives

P1(P,Q) = Pλ

P2(P,Q) =
(
P + (1− S)Pλ

)λ
P3(P,Q) =

(
P + (1− S)

(
P + (1− S)Pλ

)λ)λ
...

Pn(P,Q) = (P + (1− S)Pn−1(P,Q))λ .

(7.17)

The fixed point of the recurrence equation (7.17) can be computed analytically
for low values of λ and numerically for larger values. In Fig. 7.10 and 7.11,
the first 100 iterations are shown for λ = 2 and λ = 3 with Q = 0 together
with numerically simulated results for n = 11 averaged over 20000 realisations.
Note that a singularity in the derivative develops at some values for P , which
is reminiscent of a first-order phase transition.

The asymptotic behaviour for large n of the recurrence relation (7.17) can be
studied by considering a complementary problem for the hierarchical deposition
model. Let us study the distribution of empty intervals in generation n. We
can identify the process of depositing a hill or an empty space with a rooted
tree [93] where each vertex has λ children and we select edges with probability
1− S. The probability that a vertex has exactly k children (i.e., empty disjoint
subsets) is therefore

ξk =
(
λ

k

)
(1− S)kPλ−k , (7.18)

so the expected number µ of empty subsets after one generation is

µ =
λ∑
k=0

k

(
λ

k

)
(1− S)kPλ−k

= λ(1−Q)λ−1(1− S) .

(7.19)

We now define the stochastic variable Xn as the number of vertices in generation
n, with probability distribution P(Xn). The probability for a percolation cluster
to form in generation n is equal to the probability that the number of vertices
for the branching process is equal to zero, i.e., there are no remaining empty
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Figure 7.10: Percolation probability for λ = 2 and Q = 0. The fixed-point
solution is shown (red line) together with the percolation probabilities Pi for
the first 100 generations in steps of five (blue, dashed lines) in ascending order,
starting with n = 1, and the simulated results for generation n = 11 (black
circles).
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Figure 7.11: Percolation probability for λ = 3 and Q = 0. The fixed-point
solution is shown (red line) together with the percolation probabilities Pi for
the first 100 generations in steps of five (blue, dashed lines) in ascending order,
and the simulated results for generation n = 11 (black circles).
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subsets. Therefore, the connection between the original percolation problem
and the complementary problem can be expressed as follows

Pn(P,Q) = P(Xn = 0) . (7.20)

To calculate the probability P(Xn = 0), we define the following generating
function f for the sequence {ξk},

f(x) =
λ∑
k=0

ξkx
k

=
λ∑
k=0

xk
(
λ

k

)
(1− S)kPλ−k

= (P + (1− S)x)λ .

(7.21)

Note that this generating function has the same functional form as the recurrence
relation (7.17). Furthermore, it follows that f(0) = Pλ, f(1) = (1−Q)λ and
f ′(1) = µ. Now, define the conditional probabilities ξ(n)

j = P(Xn = j|X0 = 1).
The generating function for this new process is

Fn = f (n) ≡ f ◦ f ◦ ...f , (7.22)

which is the n-fold composition of the generating function f with itself.
Therefore, assuming that X0 = 1, the probability P(Xn = 0) is the following
function

P(Xn = 0) = f (n)(0) . (7.23)
This implies that for n→∞ the iteration converges to the first fixed point of
f(x) that is reached when starting from x = 0. If µ ≤ 1, the sequence converges
to 1, indicating percolation while for µ > 1 the iteration converges to another
fixed point. Hence, the percolation threshold Pc can be calculated as follows

Pc = 1−Q− (1−Q)1−λ

λ
, (7.24)

and for Q = 0 this reduces to

Pc = 1− 1
λ
. (7.25)

For λ = 2 and λ = 3, the percolation thresholds are, respectively, Pc = 1/2 and
Pc = 2/3, as can be seen in Fig. 7.10 and 7.11. Note that the above threshold
value (7.25) is the same value as was found for S in the previous section, for the
separation point between the Euclidean and the fractal regimes for the number
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of coastal points. Since now Q = 0, S = P = Pc is precisely the condition for
logarithmic fractality.

This coincidence can be understood from the following correspondence. When
percolation occurs, the sea level is covered with conducting blocks, which, on
average, inhibit the formation of new coastal points and, at the same time,
destroy existing coastal points. For P > Pc and n→∞, percolation is almost
certainly achieved and the number of coastal points enters the Euclidean regime
where it saturates on average to a constant value γ < 1, as shown in Section
7.2.1 and Appendix C. This γ is the following number (for Q = 0):

γ = 2λ(λ− 1)(1− P )2(1− P + P 2)
λ− 1 + P

. (7.26)

For P ≤ Pc, the number of coastal points grows either exponentially, for P < Pc,
or linearly, for P = Pc. However, for P > Pc this number effectively becomes
zero, as can be seen in Fig. 7.12 for different values of λ. In this regime, the
number of coastal points vanishes, since its asymptotic average is γ � 1 (in a
statistical sense) and percolation is almost certainly achieved. This explains the
precise correspondence between coastal-point non-proliferation and percolation.
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Figure 7.12: The constant γ describing the asymptotic average of the number
of coastal points for P > Pc for λ ∈ {2, 4, 6, 8, 10}. The black dots indicate
P = Pc for each value of λ.

The calculation involving the rooted tree of empty subsets can be directly
mapped to the study of the random Cantor set [94, 95]. The above results are
valid for Q = 0. When Q > 0, the probability for a percolation cluster to form
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is never equal to one so a percolation threshold is nonexistent. Therefore, a
singularity is absent for the fixed point of the recurrence relation (7.17).

The functional form of the solution of equation (7.17) for P ≤ Pc can be directly
calculated by finding the fixed-point solution P∞, which is possible for low
values of λ. Note that P∞ = 1 is the trivial fixed-point solution for P ≥ Pc.
We will denote the nontrivial solution by θλ(P ) and we assume Q = 0. Hence,
for λ = 2, the nontrivial solution θ2(P ) of

P∞ = (P + (1− P )P∞)2 (7.27)

is
θ2(P ) =

(
P

1− P

)2
, (7.28)

while for λ = 3, the nontrivial solution θ3(P ) is

θ3(P ) = 1− 3
2(1− P ) + 1

2

√
1 + 3P

(1− P )3 . (7.29)

We now study the critical behaviour at Pc, which we expect to have the
asymptotic form

1− θλ(P ) ∼ c(Pc − P )β , P ↑ Pc (7.30)

for some c > 0 and β > 0. The critical behaviour of the solution at the fixed
point can be found by expanding θλ about the percolation threshold, i.e.,

θ2(P ) = 1 + 8(P − Pc) +O((P − Pc)2)

θ3(P ) = 1 + 9(P − Pc) +O((P − Pc)2)

θ4(P ) = 1 + 32
3 (P − Pc) +O((P − Pc)2)

...

θλ(P ) = 1 + 2λ2

λ− 1(P − Pc) +O((P − Pc)2) .

(7.31)

Hence, the critical exponent β = 1 is obtained. This singularity is reminiscent
of a first-order phase transition in view of the jump in the first derivative of
P∞(P ) at Pc.
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7.2.4 Percolation with alternating deposition probabilities

It is possible for the hills (and holes) to originate from different sources, thereby
changing the resulting landscape. First, we will study one such system where
two sources of deposition are present and for which the characteristic length
scales remain the same, i.e., λ1 = λ2 = λ. This has previously been studied in
the context of evolving landscapes in the periodical extension of the hierarchical
deposition model and logarithmic fractal geometry was confirmed [96]. As an
extension of this previous study, we now explore percolation properties. We
consider two sources with deposition probabilities (P1, Q1) and (P2, Q2).

Repeating the calculations from the previous section 7.2.3, now with alternating
probabilities, it is straightforward to see that the percolation probability
Pn(P1, Q1, P2, Q2) for the first four generations is given by, with Si = Pi +Qi,

P1(P1, Q1, P2, Q2) = Pλ1

P2(P1, Q1, P2, Q2) =
[
P1 + Pλ2 (1− S1)

]λ
P3(P1, Q1, P2, Q2) =

[
P1 + (1− S1)

(
P2 + Pλ1 (1− S2)

)λ]λ
P4(P1, Q1, P2, Q2) =

[
P1 + (1− S1)

(
P2 + (1− S2)

(
P1 + Pλ2 (1− S1)

)λ)λ]λ
.

(7.32)

Generalising this procedure, the percolation probability for generation n is then

Pn(P1, Q1, P2, Q2) =
[
P1 + (1− S1) (P2 + (1− S2)Pn−2)λ

]λ
. (7.33)

From this expression one can see that when P1 = P2 = P and Q1 = Q2 = Q
the percolation probability reduces to that of the uniform hierarchical random
deposition model (7.17). Continuing as in the previous section, the expected
number of empty subsets can be calculated in a similar manner, i.e.,

µ =
λ∑
k=0

(
λ

k

)
Pλ−k1 (1− S1)k

λk∑
i=0

i

(
λk

i

)
Pλk−i2 (1− S2)i

= λ2(1− S1)(1− S2)
(
(1−Q2)

(
P1 + (1− S1)(1−Q2)λ

))λ−1
.

(7.34)

From equation (7.34) the percolation threshold can once again be calculated
for either P1 or P2. With Q1 = Q2 = 0, the percolation threshold becomes

P1,c = 1− 1
λ2(1− P2) . (7.35)
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For P2 a multiple of P1, i.e., for P2 = rP1, r ∈ R+, the percolation threshold is

P1,c = r + 1
2r −

√
1
rλ2 +

(
r − 1

2r

)2
. (7.36)

Notice that this expression reduces to the percolation threshold (7.25) for the
uniform random deposition model when r = 1. In Fig. 7.13, the percolation
probability is shown for the first 100 iterations of the alternating model with
λ = 3 together with the fixed-point solution. The percolation threshold is
P1,c = 7/9 and the numerically simulated results for n = 11 are averaged over
20000 realisations. The probability to dig a hole is assumed to be zero for both
sources, i.e., Q1 = Q2 = 0, while the probability to deposit a hill in the second
generation is fixed at the value P2 = 1/2.
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Figure 7.13: Percolation probability Pn(P1, Q1, P2, Q2) for alternating
deposition probabilities with λ = 3, Q1 = Q2 = 0 and P2 = 1/2, as a function
of P ≡ P1. The fixed-point solution is shown (red line) together with the
percolation probabilities for the first 100 generations in steps of five (blue,
dashed lines) in ascending order, and the simulated results for n = 11 (black
circles).

7.2.5 Percolation with alternating rescaling factors

We now assume the probabilities (P,Q) to be constant but take the characteristic
length rescaling factors λ1 and λ2 to be different, as was initially proposed in
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[97]. The percolation probability for the first three generations can be calculated
in the same manner as before, resulting in

P1(P,Q, λ1, λ2) = Pλ1

P2(P,Q, λ1, λ2) =
[
P + Pλ2 (1− S)

]λ1

P3(P,Q, λ1, λ2) =
[
P + (1− S)

(
P + Pλ1(1− S)

)λ2
]λ1

.

(7.37)

The percolation probability for generation n can be found by continuing the
above sequence

Pn(P,Q, λ1, λ2) =
[
P + (1− S) (P + (1− S)Pn−2)λ2

]λ1
, (7.38)

which reduces to the uniform random deposition model for λ1 = λ2 = λ. The
average number of empty subsets after one generation, µ, is given by

µ =
λ1∑
k=0

(
λ1

k

)
Pλ1−k(1− S)k

λ2k∑
i=0

i

(
λ2k

i

)
Pλ2k−i(1− S)i

= λ1λ2(1− S)2(1−Q)λ2−1 (P + (1− S)(1−Q)λ2
)λ1−1

.

(7.39)

The percolation threshold Pc can be calculated by solving µ = 1 for P , i.e.,

Pc = 1− 1√
λ1λ2

, (7.40)

which reduces to the formerly calculated expression (7.25) in the uniform random
deposition model in which the rescaling factors are equal, λ1 = λ2 = λ. Note
that for the calculation of the percolation threshold the roles of λ1 and λ2 in
(7.39) can be freely interchanged.

In Fig. 7.14, the percolation probability is shown for λ1 = 2 and λ2 = 3 together
with the fixed-point solution of the corresponding recurrence relation (7.38) and
numerically simulated results for n = 11 averaged over 20000 realisations. The
percolation threshold Pc = 1− 1/

√
6 is also shown.

7.3 Hierarchical ballistic deposition

Consider a one-dimensional substrate of length one, i.e., the interval [0, 1] and a
rescale factor λ ∈ N, where λ ≥ 2. In the first generation we divide the interval
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Figure 7.14: Percolation probability Pn(P,Q, λ1, λ2) for alternating rescaling
factor deposition with λ1 = 2, λ2 = 3, Q = 0. The fixed-point solution is shown
(red line) together with the percolation probabilities for the first 100 generations
in steps of five (blue, dashed lines) in ascending order, and the simulated results
for n = 11 (black circles).

in λ segments of length λ−1 and either deposit a square particle of side λ−1

with probability P or do nothing with probability 1− P and move to the next
segment. If we choose to deposit a particle, there is a probability Γ that it is
sticky and attaches itself to the side of the highest column next to it. This
is illustrated in Fig. 7.15. If the particle is not sticky, it is deposited on the
lowest segment in the column where it was dropped. Hence, the compound
probability of depositing a sticky or a regular particle in a column is respectively
P Γ and P (1− Γ). For now, let us only consider the case where no holes are
deposited (Q = 0). A possible realisation of the sixth-generation hierarchical
landscape is shown in Fig. 7.16 for λ = 3. We name this model the hierarchical
ballistic deposition model (HBDM), by analogy with the well-known ballistic
deposition model. Note that the HBDM is still a random model but with
nonzero correlation between different columns.

Sticking to another particle from the same generation is not allowed. This
would induce a reflection symmetry breaking in the horizontal direction due to
the computational deposition rules, i.e., left-to-right deposition. However, if one
does change the rules slightly to permit simultaneous deposition on all sites,
neighbouring particles can aggregate before being deposited and collectively
attach on the left, right, or both sides to the substrate. We will not study such
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P

Γ

1 − Γ

Figure 7.15: The possibilities for a particle to be deposited with a probability
P . Either the particle sticks to the material already present at the left with
probability Γ or is deposited at the bottom of the column with probability 1−Γ.
We denote a protruding particle with a crossmark.

Figure 7.16: Landscape resulting from the HBDM with λ = 3, P = 0.6, Q = 0,
Γ = 0.75 and n = 6. Periodic boundary conditions are imposed, which identify
the left and right sides.
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systems in this thesis.

We can now study the logarithmic fractal character of the resulting surface by
developing an analytic expression for the surface length increment in generation
n, i.e, ∆Ln. Note that the length increment arises from the creation of vertical
walls or cliffs and horizontal plateaus. We will study each separately. To
calculate the vertical length increment ∆V (0)

n due to the creation of new walls,
note that this can either originate from the placement of a vertical wall on a
point between two segments of equal height, or by converting a preexisting cliff
by the placement of particles next to it. For generation n, this can be calculated
to be

∆V (0)
n = λ−n

λn∑
i=1

2P (1− P )
[
1−W (n−1)

i − C(n−1)
i

]

+ λ−n
λn∑
i=1

P 2 ΓC(n−1)
i ,

(7.41)

where W (n−1)
i and C

(n−1)
i are respectively the probability that point i was

occupied by at least one wall or cliff in any of the previous n− 1 generations.
The sum overW (n−1)

i in equation (7.41) is the average number of points occupied
by at least one wall after n− 1 generations. This is equal to the number of new
walls summed over all of the generations up to and including n− 1, i.e.,

λn∑
i=1

W
(n−1)
i =

n−1∑
m=1

λm∆V (0)
m . (7.42)

However, constructing new walls is not the only way to alter the surface length
increment. The vertical increment can be increased or decreased by depositing
a particle next to a preexisting wall/cliff without creating a new wall/cliff. We
call this contribution ∆V (1)

n and find it to be

∆V (1)
n = λ−n

λn∑
i=1

P ΓW (n−1)
i

+ λ−n
λn∑
i=1

P [2− Γ(P + 1)] C(n−1)
i .

(7.43)

The horizontal increment can be increased by 2λ−n by creating a protrusion
through the deposition of a sticky particle. The increment ∆Hn is

∆Hn = 2λ−n
λn∑
i=1

P Γ
[
W

(n−1)
i + C

(n−1)
i

]
. (7.44)
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Since ∆V (1) and ∆H do not entail the creation of new walls, they did not
appear in equation (7.41). The sum over C(n−1)

i is now the average number of
points occupied by at least one cliff after n− 1 generations. This is equal to the
number of new cliffs summed over all of the generations up to and including
n− 1, i.e.,

λn∑
i=1

C
(n−1)
i =

n−1∑
m=1

λm

2 ∆Hm , (7.45)

where the factor 2 is added because every new protrusion contributes 2λ−n to
the total length and hence this must be divided out. Anticipating that for large
n the increments ∆V (0)

n , ∆V (1)
n and ∆Hn reach constant values ∆V (0)

∞ , ∆V (1)
∞

and ∆H∞, we can solve the coupled equations (7.41) and (7.44), resulting in

∆V (0)
∞ = 2P (1− P )(λ− (1− PΓ))(λ− 1)

(λ− 1)2 + (2P (1− P )− PΓ) (λ− 1)− P 3Γ2 (7.46)

∆H∞ = 4P 2Γ(1− P )(λ− 1)
(λ− 1)2 + (2P (1− P )− PΓ) (λ− 1)− P 3Γ2 , (7.47)

and from these find ∆V (1)
∞ ,

∆V (1)
∞ =

2P 2Γ(1− P )
(
(λ− 1) + 2P (1− Γ)− P 2Γ

)
(λ− 1)2 + (2P (1− P )− PΓ) (λ− 1)− P 3Γ2 . (7.48)

Now, the total surface length increment, ∆Ln in generation n, is

∆Ln = ∆V (0)
n + ∆V (1)

n + ∆Hn (7.49)

and for large n this finally becomes the sum of equations (7.46), (7.47) and
(7.48)

∆L∞ =
2P (1− P )

(
(λ− 1)2 − P 2Γ2(P + 2) + 2PΓ(λ− 1 + P )

)
(λ− 1)2 + (2P (1− P )− PΓ) (λ− 1)− P 3Γ2 . (7.50)

We now compare our analytical result with numerical simulations for λ = 3.
This is shown in Fig. 7.17. One can see that the approximation is already fairly
accurate. The increment is skewed towards higher values of P when Γ > 0. Note
that for Γ = 0, the expression reduces to equation (7.3) that was calculated
earlier in [76], i.e., for the HRDM [74].

7.3.1 Void ratio and porosity

For λ = 2 there exists the possibility to create closed cavities or voids, giving
rise to a porous structure that has been studied sporadically in the literature,
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Figure 7.17: The asymptotic length increment ∆L∞ (7.50) as a function of
deposition probability P for λ = 3. A comparison is made between the HRDM
with Γ = 0 and the HBDM with Γ = 0.5.

either in the context of deposition models [98, 99] or in a more geophysical
context [100, 101]. A possible realisation of such a porous structure is shown in
Fig. 7.18 with periodic boundary conditions in the horizontal direction. Note
that for λ ≥ 3 there is no possibility to create voids due to the hierarchical
construction of the deposition process, as shown in Fig. 7.16.

In the few studies that appear in the literature, the porosity φ is either
only studied numerically or by a combination of numerical simulation and
scaling arguments. Analytical calculations are often unfeasible because of the
lateral correlations introduced by the overhanging blocks. We will derive an
approximate analytical expression for the total void ratio e, which is equivalent
to the porosity φ under suitable scaling.

The total saturated void ratio e∞ for n→∞ can be calculated as follows

e∞ = Vv
Vs

, (7.51)

where Vv and Vs are respectively the volume (or area when the deposition is on
a D = 1 substrate) of the voids and the solid matter for n→∞. The volume
of the solid matter Vs is easily calculated to be the total volume of the blocks
that are deposited, i.e.,

Vs =
∞∑
n=1

(Pλn)λ−2n = P

λ− 1 . (7.52)
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Figure 7.18: Porous structure resulting from the HBDM with λ = 2, P = 0.6,
Γ = 0.75 and n = 9. Periodic boundary conditions are imposed, which identify
the left and right sides.

Hence, for λ = 2, this reduces to Vs = P . The total volume of the voids Vv is
calculated in appendix C. Combining equations (7.51), (7.52) and (C.18), the
void ratio e∞ becomes

e∞ =
P 4Γ3(1− P )2(1− Γ)2 (5− 2PΓ + 2P 3Γ2(1− Γ)

)
3(2− PΓ(1− P ))(1− 2PΓ(1− P ))(2− P 2Γ(1− Γ))(1− 2P 2Γ(1− Γ))

−
P 4Γ3(1− P )2(1− Γ)2 (2P 4Γ2(1− Γ) + 2P 2Γ(2− 3Γ)

)
3(2− PΓ(1− P ))(1− 2PΓ(1− P ))(2− P 2Γ(1− Γ))(1− 2P 2Γ(1− Γ))

+ P 2Γ(1− P )(1− Γ)2

6(1− P 2Γ(1− Γ))(4− P 2Γ(1− Γ)) + P 2Γ(1− P )
2 .

(7.53)
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The void ratio e and the porosity φ are connected through the following equation,
which amounts to a simple rescaling

φ = e

1 + e
. (7.54)

Fig. 7.19 shows the saturated porosity as a function of P and Γ, together
with numerical simulations averaged over 5000 realisations of the process. The
void volume (or area in two dimensions) Vv is found by a 2-pass connected
component labelling algorithm to find nearest-neighbour connected components.
It is clear that the combination of equation (7.54) with (7.53) already yields a
decent approximation for the numerical results.
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Figure 7.19: Porosity of the HBDM for λ = 2 and n = 8. The
dependency on the deposition probability P is shown for different values of
Γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The results are averaged over 5000 realisations
for each data point. The lines are the analytical predictions for the porosity,
obtained by combining equations (7.53) and (7.54).

Additional numerical results for the roughness exponent and the percolation
probability in the HBDM are given in appendix C, sections C.3 and C.4
respectively.



Chapter 8

Conclusions

8.1 BLUES function method

For ODEs, FDEs, PDEs and CDEs, the BLUES function method was set
up and analytical approximants were calculated for a plethora of (physical)
problems. While the original setup for the method was situated in the realm of
ODEs, the method was successfully extended to incorporate PDEs and CDEs
by reinterpreting the role of the inhomogeneous source as a vector of external
sources emerging from a set of initial conditions.

For ODEs, the method has been applied in chapter 3 to four equations that
possess travelling wave solutions, albeit with different structure and boundary
conditions. The first equation was the Camassa-Holm ODE without dispersion
and with a comoving external source, combined with Dirichlet boundary
conditions that decay at both positive and negative infinity. This equation
possesses travelling wave solutions that have the form of a soliton. Next,
the Burgers equation with both a symmetrical and asymmetrical source with
respectively norm unity and zero was studied. This equation is complemented
by Neumann boundary conditions where the derivative decays at both positive
and negative infinity. This results in respectively kink and solitonic solutions
for the symmetrical and asymmetrical external source, which was verified using
a sum rule for the nonlinear ODE. A third example pertained to the nonlinear
oscillator equation with Dirichlet boundary conditions whereby the solution
exhibits oscillatory behaviour within a travelling wave envelope curve. For
these three systems, the BLUES method was capable of generating analytic
approximants to the solutions with a high degree of accuracy while also correctly
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capturing the asymptotic behaviour, converging globally to the (numerically)
exact solution. A final example, the Fisher equation with the same Neumann
boundary conditions as the Burgers equation was studied and it was found that
the approximants converged locally to the exact solution, while diverging for
large negative values of the coordinate.

The method was subsequently applied to a FDE in chapter 4 that originated
from the study of heat propagation in a semi-infinite solid with nonlinear cooling.
It was found that the original formulation of the BLUES function method for
ODEs is valid if one can find the Green function for the associated fractional
linear equation. A first thorough comparison with the ADM was performed
which indicated that the BLUES function method possesses a larger region of
convergence than the ADM, while the latter requires either more iterations or
subsequent manipulations of the results to achieve the same level of convergence.

Following the successful application of the BLUES function method to the field
of ODEs and FDEs, we extended it to PDEs with a first-order time derivative by
assuming that the initial condition fulfils the role of the source by multiplication
with a Dirac point source located at t = 0. This was consequently applied
in chapter 5 to a nonlinear reaction-diffusion-convection equation, a porous
medium equation and the nonlinear Black-Scholes equation for testing purposes.
It was established that the BLUES method can effectively generate a sequence
that often converges faster to the exact solution than similar methods. Next, the
method is employed to study the solution of a heuristic equation that describes
the evolution of interfacial profiles through the combined effects of nonlinear
growth and lateral shear. A Gaussian and a space-periodic initial condition
were studied separately. It was found that although a first approximation is
already a good approximation, higher iterations quickly become unfeasible. This
first approximant coincides with a perturbative solution where the perturbation
parameters are small and of the same order of magnitude. However, for the
space-periodic initial condition, higher approximants were easily calculated
and it was established that the BLUES function method is able to accurately
reproduce the asymptotic behaviour of the Fourier coefficients of the solution
while other methods and perturbation theory either diverge drastically or
converge to a different value.

In the last chapter on the BLUES function method, i.e., chapter 6, we first
extended the method to systems of coupled ordinary differential equations
by considering an associated linear system that already possesses the fixed
points of the full nonlinear system, resulting in a powerful iterative procedure
for finding the exact solution. This was applied to the well-known SIRS and
SEIRS models with constant vaccination strategies. By means of a thorough
comparison with the ADM, VIM and HPM it was established that the BLUES
function method is able to generate approximants that converge fast to the
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numerically exact solution, in both the disease-free and endemic equilibrium.
When the parameter RV that controls the asymptotic behaviour is tuned to a
dynamical critical point, it was shown that one can take a step back and choose
the linear operator to only include the disease-free equilibrium, once again
producing useful results. Finally, the BLUES method was extended to PDEs
with higher-order time derivatives or, equivalently, systems of coupled partial
differential equations by combining the concept whereby the initial condition
can be included through multiplication with a point source and the matrix
BLUES function method. This was illustrated by applying the new formulation
of the method to a nonlinear telegrapher’s equation with a second-order time
derivative.

8.1.1 Perspectives and future research

One can imagine a myriad of extensions and applications for the different
formulations of the BLUES function method. A possible extension of the
method pertains to stochastic differential equations (SDEs), where the role of
the source can be assumed by a stochastic noise and the approximants can
for example be used to calculate the cumulants or moments of the solution.
Such an extension to SDEs is especially interesting for the domain of interface
growth, where the seminal KPZ equation involves diffusion, nonlinear growth
and stochasticity. A direct example comes to mind concerning the interface
problem studied in chapter 5. There it was assumed that the interface profile
was derived from a deterministic KPZ equation. In the future, this could be
extended to include a (possibly delta-correlated) noise term.

Possible extensions of the BLUES method aside, it can be noted that it is of
practical use in many fields of science and technology. One concrete application is
the characterisation of the potential of a pn-junction in semiconductor physics,
which can be described in terms of a nonlinear Poisson equation. A first
reconnaissance study has been conducted in the Master’s thesis of Thierry
Rondagh [102], which I co-supervised. This equation possesses an exponential
nonlinearity, which presents some problems when the exponent is large. A
further investigation of this type of nonlinearity in the BLUES method is of
great importance.

In solid-state physics, one often needs to consider equations such as the nonlinear
Schrödinger (or Gross-Pitaevskii) and the Ginzburg-Landau equations, which
possess complex solutions. These solutions are especially useful in research on
Bose-Einstein condensates and nonlinear optics [103, 104, 105, 106]. While the
use of complex functions does not entail conceptual or computational problems
within the BLUES method, it would still present an interesting research problem.
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For the Fisher equation, a possible avenue of research would be to check the
relation between the source velocity and the natural velocity of the solution
profile. This needs to be investigated in the context of PDEs. Furthermore, it
would be interesting to study the BLUES method in the framework of so-called
pushed or pulled fronts, e.g., in the dynamics of the density in an autocatalytic
reaction-diffusion equation. The main difference between these two types of
fronts is that pushed fronts converge to their asymptotic speed exponentially
fast, while pulled fronts converge much more slowly [107]. The BLUES method
may be ideally suited to find the analytical form of the asymptotic speed.

Finally, it would be interesting to explore whether the BLUES method is able
to approximate physically relevant profiles of tidal bores in a minimal model
[108, 109].

One important aspect of the method that has to be investigated is the
mathematical theory of convergence. The sequential structure of the method
makes it amenable to fixed-point analysis. A possible avenue for future research
would be the construction of a proof for the convergence of the method, based
on a Lipschitz argument, by showing that the operator for the sequence is a
contraction. The general procedure is as follows. First and foremost, one needs
to find a suitable complete metric space, say, the Banach space X and define
a norm or metric ‖.‖ in this space. Second, one needs to check whether the
residual operator R satisfies a Lipschitz property, i.e., for u, v ∈ X,

‖Ru−R v‖ ≤ L‖u− v‖ , (8.1)

where L is a positive constant. One then needs to prove that the BLUES
method operator

(T u) (x, t) ≡ u(0)(x, t) + (B ∗ Ru)(x, t) (8.2)

is a contraction. From this property, one can then prove that the sequence of
BLUES approximants is a Cauchy sequence. Now, because X is a complete
metric space, the sequence converges to a fixed point u∗, which is the solution
of the nonlinear differential equation at hand.

While this “proof” might seem simple enough, finding a complete metric space
and norm is not trivial, and the Lipschitz property for the residual operator
needs to be checked for every individual case. From the previous discussion one
can find the “region” in parameter space where the BLUES function method
converges and assess whether or not the method is useful for the problem at
hand.
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8.2 Deposition models

The synchronous hierarchical deposition model was studied in two distinct parts
where the rules governing the deposition are different. In the first part, the
hierarchical random deposition model (HRDM) was studied where particles are
deposited simultaneously and a hyperbolic scaling law governs the particle size
in each generation. The number of coastal points (or coastlines) was calculated,
which are points (or lines) on the interface between a “sea level” and an elevated
region. Next, the percolation probability for a spanning cluster to form laterally
was calculated and a connection between the percolation threshold probability
and the probability where the coastal points exhibit logarithmic fractal behaviour
was found. This indicates that exactly at the onset of percolation, the number
of coastal points grows linearly. Furthermore, the surface roughness exponent
α was determined to be 1/2 for a scaling factor λ ≥ 2. All of the theoretical
predictions are supported by numerical simulations.

In the final part we extended the rules of the HRDM to include lateral adhesion
to previously deposited material through a “stickiness” parameter Γ, inducing
lateral correlations between neighbouring columns. This model was aptly named
the hierarchical ballistic deposition model (HBDM). Approximate calculations
were performed for the surface length increment and the void ratio or porosity,
which were supported by extensive numerical simulations.

8.2.1 Perspectives and future research

Further research could include extending the coastal-point calculations to the
modified random deposition models of subsections 7.2.4 and 7.2.5 or for the
hierarchical ballistic deposition of section 7.3 or a magnetic version of the model
that has previously been studied in [110]. For these applications, it could be
worthwhile to investigate the properties of the hierarchical random deposition
model in different geometries, e.g., triangular, spherical, hexagonal etc., and
with different boundary conditions.

In a more applied arena, optical and electromagnetic properties of the surface
can be studied and tested in real-world applications such as the design of
antennae [111] or acoustic metamaterials [112]. Possible physical quantities
that are of practical use include e.g., thermal and electrical conductivity or
optimal sound scattering angles. In the case where λ = 2, it can be checked
whether the relation between the porosity and electrical conductivity obeys
Archie’s law [113, 101]. When a voltage is applied to a substrate grown by either
the HRDM or the HBDM, one can calculate the distribution of the electrical
potential in the material [114, 115], from which the effective conductivity σ can
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be calculated. Initial numerical simulations show the potential distribution for
a direct current for one possible realisation of the HBDM, see Fig. 8.1.

Figure 8.1: Potential distribution in a film grown by the HBDM with P = 0.5,
Q = 0, Γ = 0.75, λ = 3 and n = 4. Red indicates regions where the potential is
high while purple indicates regions where the potential is zero.

For a two-dimensional structure, a possible avenue for future research could
be to calculate fractal properties of contour loops that form in the flooded
landscape of e.g. Fig. 7.8. It is known [116] that there exist scaling relations
between the roughness exponent α of a self-affine surface, the fractal dimension
Df , the loop correlation exponent xl and the length distribution exponent τ .
It would be interesting to calculate these exponents for both the HRDM and
HBDM. One can also wonder whether the “cityscape” or “skyline” created
by hierarchical deposition can be used to calculate e.g. the optimal building
strategy to maximise solar energy yield in urban environments [117].

Of course one could try to extend all of the previously mentioned calculations for
physical quantities to the HBDM. We expect this is not always feasible by virtue
of the lateral correlations induced by the sticking of new particles. Another
course of action would be including a different scaling law for the particle size
that e.g. allows for larger particles to be deposited on top of smaller particles
or by allowing new particles to “smash” into the material, partly erasing the
history of the affected columns.

Aside from possible nanotechnological applications [5] or the calculation of
different physical quantities, the rules of hierarchical deposition model can
be further extended to include e.g. lateral diffusion, relaxation of incoming
particles to “stick” to lower adjacent sides [99] or desorption of particles that
are at the corners of the material [118].





Appendix A

BLUES function method

We provide additional calculations for the chapters on the BLUES function
method for ODEs and PDEs. This appendix is mainly based on the appendices
from the articles “BLUES iteration applied to nonlinear ordinary differential
equations for wave propagation and heat transfer” [33] and “The BLUES function
method applied to partial differential equations and analytic approximants for
interface growth under shear” [45].

A.1 First approximants for the Burgers equation

To calculate the first approximant for the solution of the Burgers equation
(3.22), the residual operator (3.23) is applied to the zeroth approximant (3.25)
in accordance with the iteration equation (6.53)

RzU (0)
ψ (z) =

{
k

4α2

(
2α−Kez/K

)
ez/K z < 0

1
4α2β2

(
4k4e 2z

K − kα2
(

2ke αzkK −Ke 2z
k

))
e− 2zα

kK z ≥ 0,
(A.1)

where α = k +K and β = k −K. When K = k, the residual operator applied
to equation (3.26) results in the following simple expression for the residual
function

RzU (0)
ψ (z) = 1

16k2

{
−k2(e2z/k − 4ez/k) z < 0
(k + 2z)(3k + 2z)e−2z/k z ≥ 0.

(A.2)

Note that the residual function decays to zero when |z| → ∞. Now a convolution
product of the BLUES function (3.20) with the residual (A.1) is calculated. For
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the sake of brevity, the difference between the zeroth and first approximants
∆U (1,0)

ψ = U
(1)
ψ − U

(0)
ψ is shown, which is exactly the convolution product

∆U (1,0)
ψ (z) = (B ∗ RzU (0)

ψ )(z)

∆U (1,0)
ψ (z) =

(
kK2

8α2(2k +K)

(
K
(

ez/K − 4
)
− 8k

)
ez/K + k

2

)
(1−Θ(z))

−

(
k5e− 2z

k

2α2β2 +
k2 (8k3 + 16k2K + 6kK2 +K3) e− zk

2γα2

)
Θ(z)

+
(

kK3e− 2z
K

8β2(K − 2k) + k2K2e−αzkK

2β2α

)
Θ(z) ,

(A.3)

where γ = K2−4k2 and Θ(z) is the Heaviside step function. The case for which
K = 2k can be treated separately and results in the following simple expression

∆U (1,0)
ψ (z) = 1

36

{
k(18− 8ez/2k + ez/k) z < 0
(−2k + 24kez/2k + ez/k(18z − 11k))e−2z/k z ≥ 0

(A.4)

Note that the constant value at z → −∞ for the first approximants U (1)
ψ (z) in

both cases (A.3) and (A.4) is now 1+k/2, which for k = 1/3 equals 7/6 ≈ 1.167..
whereas the value for the exact solution is 1.268... This first iteration is already
a good approximation to the exact result.

A.2 First approximant for the Fisher equation

To calculate the first approximant to the solution of the Fisher equation (3.39),
the residual operator (3.40) is applied to the zeroth approximant (3.25) in
accordance with the iteration equation (6.53)

RzU (0)
ψ (z) = k

4


Kez/K(2α−Kez/K)

α2 z < 0
e
−2z( 1

k
+ 1
K )(Kαez/k−2k2ez/K)(2k2ez/K−αez/k(K+2βez/K))

(k2−K2)2 , z ≥ 0
(A.5)

where α = k +K and β = k −K. Now a convolution product of the BLUES
function (3.20) with the residual (A.5) is calculated. The difference between
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the zeroth and first approximants ∆U (1,0)
ψ = U

(1)
ψ − U (0)

ψ is shown, i.e.,

∆U (1,0)
ψ (z) = k

8α2

(
K4

2α e−2z/K − 4K3e−z/K
)

(1−Θ(z))

+ k

4α2

(
(2k3 + 4k2K + 6kK2 + 3K3)

)
(1−Θ(z))

+ k

8α2β2

(
4k5e−2z/k + 8k2K3(5k2 +K2)

γ
e−z/k + 4K3α2e−z/K

)
Θ(z)

−
(

8k2K3e−αz/kK + K4α2

2k −K e−2z/K
)

Θ(z) ,

(A.6)

where α = k+K, β = k−K and γ = K2−4k2. The cases for which K = k and
K = 2k must be treated separately but these calculations will not be performed
here. Note that in the first iteration the solution U (1)

ψ (z) approaches a constant
value Uc for z → −∞. This constant was calculated in equation (3.43).

A.3 First approximant for the interface model with
shear

The nonlinearity in equation (5.76) can be split up into two parts with different
values for m,n. We first calculate the first correction to the zeroth iteration
solution (5.62) for the nonlinearity Rx u = −αuux, which corresponds to
m = n = 1. Starting from equation (5.65) and using the property (5.67) or
(5.69), the function Ξ(x, t, s) reduces to

Ξ(x, t, s) =
√
π
√

2D(t− s)
2

Σ3(s)
S3(t, s)x . (A.7)

Inserting this into (5.71) and keeping track of the signs results in the correction
∆u(1,0) = u(1) − u(0), i.e.,

∆u(1,0) = α

(2π) 3
2

t∫
0

ds e−x2/2S2(t,s)√
2D(t− s)Σ(s)4

Ξ(x, t, s)

= αx

4
√

2π

t∫
0

dse−x2/2S2(t,s)

Σ(s)S3(t, s) .

(A.8)
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By making the substitutions ξ = S−1(t, s), 2D(t − s) = 2ξ−2 − Σ2(t) and
Σ(s) =

√
2ξ−1

√
ξ2Σ2(t)− 1, the integral can be transformed into

∆u(1,0) = αx

4πD

ξH∫
ξL

dξ ξe−x2ξ2/2√
Σ2(t)ξ2 − 1

, (A.9)

with integration limits ξL = S−1(t, 0) =
√

2/Σ(2t) and ξH = S−1(t, t) =√
2/Σ(t). Before solving, we first proceed to calculate the first correction to the

zeroth approximant (5.62) for the nonlinearity Rx u = −βu2
x, which corresponds

to m = 0, n = 2. Starting from equation (5.65) and using the property (5.68)
or (5.70), the function Ξ(x, t, s) reduces to

Ξ(x, t, s) =
√

2D(t− s)
√
π

2
Σ3(s)
S3(t, s)

(
2D(t− s) + x2

2
Σ2(s)
S2(t, s)

)
. (A.10)

Once again inserting this into (5.71) and keeping track of the signs results in
the correction

∆u(1,0) = − β

4π
√

2

t∫
0

ds e−x2/2S2(t,s)

Σ3(s)S3(t, s)

(
2D(t− s) + Σ2(s)x2

2S2(t, s)

)
. (A.11)

By making the same substitutions as before the integral can be transformed
into

∆u(1,0) = −β
8πD

ξH∫
ξL

dξ ξe−x2ξ2/2√
Σ2(t)ξ2 − 1

(
x2ξ2 − 1 + 1

Σ2(t)ξ2 − 1

)
. (A.12)

Finally, combining equations (A.9) and (A.12), the correction to the zeroth
approximant becomes

∆u(1,0) = 1
4πD

ξH∫
ξL

dξ ξe−x2ξ2/2√
Σ2(t)ξ2 − 1

(
β

2 + αx− βx2ξ2

2 − β

2 (Σ2(t)ξ2 − 1)

)
,

(A.13)
which can easily be solved and subsequently simplified by noticing that 2Σ2(t)−
Σ2(2t) = σ2 to give the following expression for the correction in first iteration
to the zeroth approximant of (5.76)

∆u(1,0) = β

4πD

[
e−x2/Σ2(t)

Σ2(t) − e−x2/Σ2(2t)

Σ(2t)σ

]

+ α

4D
√

2π

[
e−x2/2Σ2(t)

Σ(t)

(
erf
(

x√
2Σ(t)

)
− erf

(
σx√

2Σ(t)Σ(2t)

))]
.

(A.14)
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This can now be rearranged to yield equation (5.78).

A.4 Fourier coefficients for the space-periodic in-
terface height profile

In this Appendix we discuss in detail the Fourier coefficients of various harmonics
that are generated by the BLUES iteration at the level of the second approximant
(n = 2) for the problem of the time evolution of the periodic interface height
profile and compare them with their counterparts in 2nd-order PT. We first
present, for p ∈ {0, 1, 2, 3}, the real pth coefficients calculated by both methods
and then discuss them with the aid of two figures, A.1 and A.2.
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● a0(t)

■ a1(t)

◆ a2(t)

▲ a3(t)

ap BLUES

ap PT

1 2 3 4 5
t

-0.2

0.2

0.4

0.6

ap(t)

a1(t)

a3(t)

Figure A.1: Time evolution of the coefficients ap(t) of the cosine harmonics in
the Fourier series expansion of the solution of (5.76). The numerical solutions
(red symbols) for ap(t) are compared with the second approximants of the
BLUES function method (full lines) and 2nd-order PT. Parameter values are
D = α = 1 and β = −1.

For the an coefficients we obtain:

• a0 BLUES:

a0(t) = −β(1− e−2Dt)
2D −

β
(
α2 + β2) (1− e−2Dt)3 (3 + e−2Dt)

96D3 (A.15)
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■ b1(t)

◆ b2(t)

▲ b3(t)

bp BLUES

bp PT

1 2 3 4 5
t

-0.10

-0.05

0.00

0.05

0.10

0.15

bp(t)

b3(t)

Figure A.2: Time evolution of the coefficients bp(t) of the sine harmonics in the
Fourier series expansion of the solution of (5.76). The numerical solutions (red
symbols) for bp(t) are compared with the second approximants of the BLUES
function method (full lines) and 2nd-order PT. Parameter values are D = α = 1
and β = −1.

• a0 PT:
a0(t) = −β(1− e−2Dt)

2D (A.16)

• a1 BLUES:

a1(t) = −
αβ
(
e−Dt + 2e−3Dt − 3e−5Dt)

32D2 + αβe−Dt t

4D (A.17)

• a1 PT:
a1(t) = αβ(16− 15e−Dt − 10e−3Dt + 9e−5Dt)

96D2 (A.18)

• a2 BLUES

a2(t) = −β(e−2Dt − e−4Dt)
4D − α

2β(e−2Dt − e−6Dt)
16D3 + α2βe−4Dtt

4D2 (A.19)

• a2 PT:
a2(t) = −β(e−2Dt − e−4Dt)

4D (A.20)
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• a3 BLUES:

a3(t) = 7αβ(1− e−2Dt)2(2e−3Dt + e−5Dt)
96D2 (A.21)

• a3 PT:
a3(t) = 7αβ(2− 5e−3Dt + 3e−5Dt)

120D2 (A.22)

• a4 BLUES:

a4(t) = β(β2 − 2α2)(1− e−2Dt)3(10e−4Dt + 6e−6Dt + 3e−8Dt + e−10Dt)
960D3

(A.23)

For the bn coefficients we obtain:

• b0 = 0 BLUES and PT.

• b1 BLUES:

b1(t) = e−Dt − (α2 + 4β2)(e−Dt − 2e−3Dt + e−5Dt)
32D2 (A.24)

• b1 PT:

b1(t) = e−Dt − (α2 + 4β2)(e−Dt − 2e−3Dt + e−5Dt)
32D2 (A.25)

• b2 BLUES:

b2(t) = −α(e−2Dt − e−4Dt)
4D +αβ2(e−2Dt − e−6Dt)

16D3 −αβ
2e−4Dt t

4D2 (A.26)

• b2 PT:
b2(t) = −α(e−2Dt − e−4Dt)

4D (A.27)

• b3 BLUES:

b3(t) = (3α2 − 4β2)(1− e−2Dt)2(2e−3Dt + e−5Dt)
96D2 (A.28)

• b3 PT:
b3(t) = (3α2 − 4β2)(2− 5e−3Dt + 3e−5Dt)

120D2 (A.29)
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• b4 BLUES:

b4(t) = −α(α2 − 5β2)(1− e−2Dt)3(10e−4Dt + 6e−6Dt + 3e−8Dt + e−10Dt)
1920D3

(A.30)

Note that in the second approximant for a0(t) terms of order α2β and β3

are generated, which are absent in 2nd-order PT. Als note that a1(t) (first
harmonic) and a3(t) (third harmonic) are both proportional to αβ, as in PT.
Importantly, in the BLUES function method a1(t) and a3(t) tend to zero for
long times, in agreement with the numerical solution, whereas the 2nd-order
PT expressions tend to non-zero constants (see also Fig. A.1). In this respect
the BLUES iteration is qualitatively superior. The coefficient a2(t) (second
harmonic) has a first order in β contribution which is the same in both methods,
and an additional α2β contribution in the second BLUES approximant. In both
methods the result is very close to the numerical solution (see Fig. A.1). Note
that a4(t) (fourth harmonic) is generated in 2nd-iteration BLUES but is absent
in 2nd-order PT. This is a consequence of the fact that the BLUES function
method is non-perturbative and already generates higher harmonics in a lower
iteration than the perturbation series.

As for the bn(t), the coefficient b1(t) (first harmonic reflecting the initial
condition) contains the zeroth approximant, which is (of course) the same
in both methods. Moreover, the entire expressions for b1(t) coincide in 2nd-
iteration BLUES and 2nd-order PT (see also Fig. A.2). The coefficient b2(t)
(second harmonic) has a first order in α contribution which is the same in both
methods, and an additional αβ2 contribution in the 2nd BLUES approximant.
In both methods the result is nearly the same but both are somewhat off of
the numerical solution (see Fig. A.2). Importantly, in the BLUES function
method b3(t) (third harmonic) tends to zero for long times, in agreement with
the numerical solution, whereas the 2nd-order PT expression tends to a non-zero
constants (see also Fig. A.2). In this respect the BLUES iteration is again
qualitatively superior. Finally, b4(t) (fourth harmonic) is present in BLUES but
is obviously absent in 2nd-order PT because it is of third order.



Appendix B

Epidemiological models

We provide additional calculations for the chapter on the BLUES function
method for CDEs and a complete global stability analysis for the SIRS model.
This appendix is based on the appendix from the preprint “Epidemic processes
with constant vaccination and immunity loss studied with the BLUES function
method” [61]. It is supplemented with calculations on the SEIRS model.

B.1 Stability analysis for the SIRS model

The system (6.15) has two fixed points that can be found by a fixed-point
analysis which reveals both the disease-free equilibrium ε0 in which the disease
has died out, and an endemic equilibrium εe in which the infected population
density reaches a nonzero asymptotic value, i.e.,

ε0 = (s∗0, i∗0) =
(

1− πp

π + ξ
, 0
)

(B.1a)

εe = (s∗e, i∗e) =
(
π + γ

β
,
β((1− p)π + ξ)− (γ + π)(ξ + π)

β(γ + π + ξ)

)
. (B.1b)

Note that the disease-free equilibrium ε0 is independent of the average contact
rate β. The endemic equilibrium (B.1b) can be simplified to

εe = (s∗e, i∗e) =
((

1− πp

π + ξ

)
1
RV

,
(1− p)π + ξ

γ + π + ξ

(
1− 1

RV

))
. (B.2)
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The global asymptotic stability for the endemic equilibrium can be proven as
follows. First note that the positive quadrant R2

+ of the SI-plane is not an
invariant set of the system (6.15), i.e., when s(t) = 0 then s′(t) < 0 for all values
i(t) > (π(1− p) + ξ)/ξ. This can be resolved by shifting (s, i) to (Σ, i), where

Σ(t) = s(t) + ξ

β
. (B.3)

Hence, the shifted system becomes

Σ′(t) = π(1− p)− βΣ(t)i(t)− (π + ξ)Σ(t) + ξ

β
(ξ + π) + ξ (B.4a)

i′(t) = βΣ(t)i(t)− (γ + π + ξ)i(t) . (B.4b)

It is now easy to see for Σ(t) = 0, now Σ′(t) ≥ 0 for all values of i(t). By
shifting the system, the endemic equilibrium coordinates change as follows

(Σ∗e, i∗e) =
(
π + γ + ξ

β
,
π((1− p)β − γ − π) + ξ(β − γ − π)

β(π + γ + ξ)

)
. (B.5)

All global properties of the system remain invariant under the shifting of the
coordinates, so we can now try to find a Lyapunov function V (Σ, i) to prove
global asymptotic stability of the endemic fixed point (B.5) of the shifted system
(B.4) and hence also of the original system (6.15). We can choose the following
Lyapunov function [119]

V (Σ, i) = Σ∗e
(

Σ
Σ∗e
− ln Σ

Σ∗e

)
+ i∗e

(
i

i∗e
− ln i

i∗e

)
(B.6)

with time derivative

V ′(Σ, i) = ∂V

∂Σ Σ′(t) + ∂V

∂i
i′(t)

=
(

1− Σ∗e
Σ(t)

)
Σ′(t) +

(
1− i∗e

i(t)

)
i′(t) .

(B.7)

Now, from (B.4a) and (B.4b) it is clear that for the endemic equilibrium the
following holds

βΣ∗ei∗e = π(1− p)− (π + ξ)Σ∗e + ξ

β
(ξ + π) + ξ

= (γ + π + ξ)i∗e .
(B.8)
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Substituting this property into (B.7) and simplifying gives after some algebra

V ′(Σ, i) =
(

1− Σ∗e
Σ(t)

)
Σ′(t) +

(
1− i∗e

i(t)

)
i′(t)

= −
(
π(1− p) + ξ

β
(ξ + π) + ξ

)(
Σ(t)
Σ∗e

)(
1− Σ∗e

Σ(t)

)2

≤ 0 ,

(B.9)

for all values of Σ, i ≥ 0. This concludes the proof that the endemic equilibrium
is globally asymptotically stable. Proving the global stability of the disease-free
fixed point is now trivial. One can repeat the previous calculations with the
Lyapunov function

V (Σ, i) = Σ∗0
(

Σ
Σ∗0
− ln Σ

Σ∗0

)
+ i , (B.10)

which is the same as (B.6) with now Σ∗0 instead of Σ∗e and i∗e → 0.
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B.2 First SIRS approximants

We list here the first analytical approximants s(1)(t) and i(1)(t) for the disease-
free equilibrium in the SIRS model:

s(1)(t) = 1− pπ

π + ξ
+ βi20ξ(γ + π − ξ)

(γ + π)(γ − ξ)(2γ + π − ξ)e
−2(γ+π)t

+
(

βγi20ξ

(γ + π)(γ − ξ)(2γ + π − ξ) + πp

π + ξ
+ s0 − 1

)
e−(π+ξ)t

+ i0
(γ − ξ)2

(
ξ2
(

βi0
γ + π

− βt− 1
)
− βπ2p(γ + π)

(π + ξ)2

)
e−(γ+π)t

−
(
i0(ξ(γ + π)(γ − ξ) + βγ(π + ξ + π(−p)) + βγs0(γ − ξ))

(γ + π)(γ − ξ)2

)
e−(π+ξ)t

+ i0
(γ − ξ)2

(
βπ(γ + π(πpt+ 2p+ 1− i0) + γπpt)

π + ξ
+ βξs0(γ − ξ)

π + ξ

)
e−(γ+π)t

+ i0
(γ − ξ)2 (ξ(γ + β(πpt+ γt+ 1− i0))− βπ(pt(γ + π) + p+ 1− i0)) e−(γ+π)t

+ βi0πξ(π(1− p− i0 − s0) + (1− i0 − s0))
(γ + π)(γ − ξ)(π + ξ)2 e−(γ+2π+ξ)t

+ βi0πγ(π(p+ s0 − 1) + ξ(s0 − 1))
(γ + π)(γ − ξ)(π + ξ)2 e−(γ+2π+ξ)t (B.11)

i(1)(t) = i0β(π(1− p− s0) + ξ(1− s0))
(π + ξ)2 e−(2π+γ+ξ)t

+ i0

(
1 + β(t+ πp

(π + ξ)2 −
1 + πpt− s0

π + ξ
)
)
e−(π+γ)t

+ i20βξ

[
e−(2π+γ+ξ)t

(π + ξ)(γ − ξ) −
e−2(π+γ)t

(π + γ)(γ − ξ) −
e−(π+γ)t

(π + γ)(π + ξ)

]
. (B.12)
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B.3 The SEIRS model

The equilibria of the SEIRS model can be found by first substituting r =
1 − s − e − i into the system (6.39) and solving the resulting reduced “three-
dimensional” subsystem with s′ = e′ = i′ = 0. The disease-free ε0 and endemic
εe equilibria are respectively

ε0 = (s∗0, e∗0, i∗0) =
(

1− πp

π + ξ
, 0, 0

)
(B.13a)

εe = (s∗e, e∗e, i∗e) (B.13b)
with

s∗e = (π + γ)(π + σ)
βσ

(B.14a)

e∗e = βσ(π(1− p) + ξ)− (π + σ)(π + γ)(π + ξ)
βσ(γ(π + ξ + σ) + (π + ξ)(π + σ)) (π + γ) (B.14b)

i∗e = βσ(π(1− p) + ξ)− (π + σ)(π + γ)(π + ξ)
β(γ(π + ξ + σ) + (π + ξ)(π + σ)) . (B.14c)

Note that when σ →∞, the equilibria reduce to those of the SIRS model, i.e.,
equations (B.1a) and (B.2), with e∗e = 0. We now write the system as a vector
equation as in (6.18), where the vector of initial conditions C can be included by
multiplying it with a point source at t = 0. We have X the vector of solutions,
C the vector of initial conditions, χ the vector of external sources, i.e.,

X(t) =

s(t)e(t)
i(t)

 C =

s0

e0

i0

 χ =

π(1− p) + ξ + βs∗i∗

−βs∗i∗

0

 (B.15)

and A the matrix of coefficients for the linear part of the reduced subsystem,

A =

−(π + ξ + βi∗) −ξ −(ξ + βs∗)
βi∗ −(σ + π) βs∗

0 σ −(γ + π)

 . (B.16)

Finally, the nonlinear part of the system (6.39) is given by

RX =

−β(s− s∗)(i− i∗)
β(s− s∗)(i− i∗)

0

 . (B.17)

The BLUES iteration can now be set up in the same manner as (6.26) and
(5.62).





Appendix C

Hierarchical deposition

This appendix is based on the appendix in the article ”Coastlines and percolation
in a model for hierarchical random deposition“ that appeared in Physica
A: Statistical Mechanics and its Applications [74]. It is supplemented with
additional numerical simulations on the roughness exponent and the percolation
probability for the HBDM.

C.1 Number of coastal points

Starting from equation (7.10) and working out the sums explicitly results in
the following expression for the number of coastal points in generation n:

Nn(P,Q) = 2λP (1− P )1− (1− S)2n

1− (1− S) (C.1)

+ 2λ(λ− 1)P (1− P )(1− S)
[

1− (λ(1− S))n−1

1− λ(1− S)

]

+ 2λP (Q− P )(1− S)
[

1− λn−1(1− S)n−1

1− λ(1− S)

] [
1− λ−(n−1)(1− S)n−1

1− λ−1(1− S)

]

+ 2λ(λ− 1)P (1− P )(1− S)3
[

1− λn−2(1− S)n−2

1− λ(1− S)

] [
1− λ−(n−2)(1− S)n−2

1− λ−1(1− S)

]
.
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It can be seen now that if λ(1− S) < 1, the above expression converges to a
constant γ for very large values of n. This constant can be calculated to be

γ = 2λP (1− P )
1− (1− S) + 2λ(λ− 1)P (1− P )(1− S)

1− λ(1− S)

+ 2λP (Q− P )(1− S)
1− (1− S)(λ+ λ−1) + (1− S)2

+ 2λ(λ− 1)P (1− P )(1− S)3

1− (1− S)(λ+ λ−1) + (1− S)2 .

(C.2)

For λ(1 − S) > 1, the number of coastal points increases exponentially. The
limiting case λ(1− S) = 1 results in a linear increase in coastal points. This
can be seen by formally calculating the limit of the number of coastal points
(C.1) for λ(1− S)→ 1, which results in

Nn(P,Q) = 2λ(λ− 1)P (1− P )(1− S)(n− 1)

+ 2λP (Q− P )(1− S)(n− 1)

+ 2λ(λ− 1)P (1− P )(1− S)3(n− 2) .

(C.3)

C.2 Percolation in third generation

In generation n = 3 with λ = 3 there are 721 different possibilities to obtain
percolation. We will not list them all but will show some possibilities and
comment on the degeneracy within one combination.

First, consider combinations that experienced the deposition of two hills of
length 1/λ and one empty space in the first generation. There are only three
ways to do this. In the second generation, consider hills of length 1/λ2 or
empty spaces being deposited in the empty space created in the first generation.
Once again, only zero, one or two hills can be deposited, with the possible
number of configurations being respectively 1, 3 and 3. In the third generation,
percolation can only occur when all remaining empty spaces at sea level are
filled with conducting hills. These possibilities are shown in Fig. C.1. It is now
straightforward to see that this results in 21 different possible configurations.
Added together, these probabilities result in

3P 2(1− S)
2∑
k=0

(
2
k

)
P k(1− S)3−kP 3(3−k) . (C.4)



PERCOLATION IN THIRD GENERATION 155

(a) (b) (c)

Figure C.1: Possible configurations in which percolation is achieved when two
blocks were deposited in n = 1 and (a) no block was deposited, (b) one block
was deposited or (c) two blocks were deposited in n = 2.

Next, we consider possibilities in which a single hill was deposited in the
first generation. Once again there are only three possibilities. In the second
generation, 0 to 5 hills can be deposited with the number of configurations
being, respectively, 1, 6, 15, 20, 15 and 6. In the third generation, empty spaces
at sea level need to be filled with conducting hills to obtain percolation. Some
combinations are shown in Fig.C.2 for 1, 2 or 3 hills being deposited in the
second generation.

(a) (b) (c)

Figure C.2: Possible configurations in which percolation is achieved when one
block was deposited in n = 1 and (a) one block was deposited, (b) two blocks
were deposited or (c) three blocks were deposited in n = 2. The possibilities
where 0, 4 or 5 blocks were deposited are not shown.

This results in a total of 189 different microscopic configurations. Once again
adding these probabilities together, the following expression is obtained

3P (1− S)2
5∑
k=0

(
5
k

)
P k(1− S)6−kP 18−3k . (C.5)

Lastly, consider the possibilities in which in the first generation nothing has
been deposited. We will not show this here but after some calculations it is
straightforward to see that this results in 511 unique combinations for percolation.
In this case the probability becomes

(1− S)3
8∑
k=0

(
8
k

)
P k(1− S)9−kP 27−3k . (C.6)
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In total, for n = 3, there are 721 different microscopic combinations possible to
obtain percolation, with an associated probability

3P 2(1− S)
2∑
k=0

(
2
k

)
P k(1− S)3−kP 9−3k

+3P (1− S)2
5∑
k=0

(
5
k

)
P k(1− S)6−kP 18−3k

+(1− S)3
8∑
k=0

(
8
k

)
P k(1− S)9−kP 27−3k .

(C.7)

Adding the different contributions results in an expression for the percolation
probability for λ = 3 and n = 3.

C.3 The roughness exponent of the resulting sur-
face revisited

We calculate the roughness exponent αλ for the surface created by the HBDM
and compare with the value of α = 1/2 previously predicted in subsection
7.2.2 for the HRDM. We denote by the index λ the scale factor for which the
roughness exponent was calculated. In Table C.1, the exponents α3 and α2
are shown for different values of Γ; first for λ = 3, n = 6 and subsequently for
λ = 2, n = 8, with P = 0.7 and Q = 0. The results are averaged over 2000
realisations for each data point.

Table C.1: Roughness exponents α3 and α2 for the surface resulting from the
HBDM for different values of Γ, with P = 0.7 and Q = 0.

Γ 0 1/3 2/3 1
α3 0.4935 0.4792 0.4758 0.4636
α2 0.4883 0.4463 0.4373 0.4562

From Figures C.3 and C.4 it can be seen that by increasing the value of the
stickiness parameter Γ the distinct fine structure that is present in the case
where Γ = 0 now vanishes, slowly being smoothed out by lateral correlation
between the columns.
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Figure C.3: Log-log plot of the height–height correlation function for λ = 3,
P = 0.7 , Q = 0 and n = 6 drawn for different values of Γ.
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Figure C.4: Log-log plot of the height–height correlation function for λ = 2,
P = 0.7 , Q = 0 and n = 8 drawn for different values of Γ.
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C.4 Percolation for the HBDM: numerical results

We provide numerical results for the percolation probability in the HBDM
for λ = 3. The presence of overhangs can shield the underlying substrate
and prevent future percolation from occurring in all subsequent generations.
We expect that when Γ > 0, a percolating cluster can only form in the first
generation due to the absence of overhangs. Hence, for λ ≥ 3, the percolation
threshold is located at the trivial value of Pc = 1. This can easily be seen in
Fig. C.5, where the percolation probability is shown for different values of Γ,
with Q = 0 and n = 6. For each data point, the results are averaged over 5000
realisations.
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Figure C.5: Percolation probability P6(P,Q,Γ) for λ = 3 and Q = 0 shown
for different values of Γ. The fixed-point solution θ3(P ) for Γ = 0 is shown
(black, full line) together with the lower bound Plower(P ) (red, full line) given
by equation (C.9), and the numerical results for generation n = 6 (symbols).

While we do not attempt to derive an exact expression for the fixed-point
solution here, we can however note that for λ ≥ 3 the percolation probability
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must be bounded from below by the function

Plower(P ) = Pλ + (1− P )λPλ
2

+ (1− P )λ(1− P )λ
2
Pλ

3
+ ...

= Pλ +
∞∑
i=1

i∏
j=1

(1− P )λ
j

Pλ
i+1

= Pλ +
∞∑
i=1

(1− P )
λ(λi−1)
λ−1 Pλ

i+1

(C.8)

for the case where Γ = 1, and from above by θλ(P ), i.e., the fixed-point solution
of equation (7.27) for the HRDM with Γ = 0. The summation on the last line
of (C.8) can be performed exactly and a closed form solution is found when the
substitution j = λi+1 is introduced, i.e.,

Plower(P ) = Pλ + (1− P )λPλ2

1− P (1− P ) 1
λ−1

. (C.9)

Note that for λ = 2, overhanging particles can connect horizontally to bridge
underlying gaps, achieving percolation by connecting disjoint parts of the
material on an elevated level, i.e. above sea level. We defer a more thorough
investigation of this phenomenon for future research.

C.5 Saturated void volume

Suppose that in the ith generation a single wall was created with height λ−i.
A void with volume (or area) λ−(i+1) is created by depositing a sticking and a
non-sticking particle next to each other. A hierarchy of consecutive voids can
be created at the vertical wall created by the previous deposition, as shown in
Fig. C.6 for the first three consecutive generations. This can be continued at
infinitum. The result is summed for generations i from 2 to infinity, i.e.,

2P (1− Γ)(1− P )
∞∑
i=2

∞∑
j=1

j∑
k=1

λ−2(i+k) (P 2Γ(1− Γ)
)j
, (C.10)

for all generations i ≥ 2. Obviously, closed-off voids can only be created for
λ = 2 but we will continue to use λ in the following calculations to avoid
confusion with notation.

We can now repeat the same procedure for the case where two consecutive walls
of height λ−i are present in generation i. We then consider the next generation
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Figure C.6: First three consecutive configurations for generations i+ 1 (left),
i+2 (middle) and i+3 (right) for voids to be created when one vertical wall (on
the left edge) is present in generation i. The voids are indicated by an orange
edge.

i + 1. There are two possibilities at this stage, which are shown in Fig. C.7.
The total void volume is

(2λ−2(i+1))P 2Γ2 + (λ−2(i+1))2P 2Γ(1− Γ) . (C.11)

Figure C.7: Possibilities for voids (indicated with an orange edge) to be created
in generation i+ 1 for a wall–wall combination.

For generation i+ 2, the three possibilities are shown in Fig. C.8 and the total
void volume is given by(

2λ−2(i+1) + 2λ−2(i+2)
)

(2PΓ(1− P ))P 2Γ2

+
(
λ−2(i+1) + 2λ−2(i+2)

) (
2P 2Γ(1− Γ)

)
P 2Γ2

+
(
λ−2(i+1) + λ−2(i+2)

) (
2P 2Γ(1− Γ)

)2
.

(C.12)
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Figure C.8: Possibilities for voids (indicated with an orange edge) to be created
in generation i+ 2 for a wall–wall combination.

For generation i+ 3, the four possibilities are shown in Fig. C.9 and the total
void volume is now given by(

2λ−2(i+1) + 2λ−2(i+2) + 2λ−2(i+3)
)

(2PΓ(1− P ))2
P 2Γ2

+
(
λ−2(i+1) + 2λ−2(i+2) + 2λ−2(i+3)

) (
2P 2Γ(1− Γ)

)
(2PΓ(1− P ))P 2Γ2

+
(
λ−2(i+1) + λ−2(i+2) + 2λ−2(i+3)

) (
2P 2Γ(1− Γ)

)2
P 2Γ2

+
(
λ−2(i+1) + λ−2(i+2) + λ−2(i+3)

) (
2P 2Γ(1− Γ)

)3
.

(C.13)

Figure C.9: Possibilities for voids (indicated with an orange edge) to be created
in generation i+ 3 for a wall–wall combination.
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Equations (C.11), (C.12) and (C.13) can be generalised to higher generations
(i+ j). This results in the following equation,

j−1∑
k=1

j−k−1∑
l=1

λ−2(i+l) + 2
j∑

l=j−k
λ−2(i+l)


· (2PΓ(1− P ))k

(
2P 2Γ(1− Γ)

)j−k−1
P 2Γ2 .

(C.14)

Carrying out the innermost sums and simplifying the result gives the following,

P 2Γ2

λ2 − 1

j−1∑
k=1

[
λ−2i − 2λ−2(i+j) + λ−2(i+j−k−1)

]
· (2PΓ(1− P ))k

(
2P 2Γ(1− Γ)

)j−k−1
.

(C.15)

Once again continuing this ad infinitum and summing generations j results in
the following expression

P 2Γ2

λ2 − 1

∞∑
j=1

j−1∑
k=1

[
λ−2i − 2λ−2(i+j) + λ−2(i+j−k−1)

]

· (2PΓ(1− P ))k
(
2P 2Γ(1− Γ)

)j−k−1
,

(C.16)

which, after multiplication with P 2(1− Γ)2(1− P ) gives the average saturated
void volume that results from wall–wall combinations. Finally, adding equation
(C.10), the void volume from the first two generations, i.e., 2P 3(1 − P )Γλ−2

and equation (C.16), the final equation for the void volume with λ = 2 is

Vv(P,Γ) = P 4Γ2(1− Γ)2(1− P )
3

∞∑
i=2

∞∑
j=1

j−1∑
k=1

{
2−2(i+j) (4j + 4k+1 − 2

)

· [2PΓ(1− P )]k
[
2P 2Γ(1− Γ)

]j−k−1
}

+ P 3Γ(1− P )
2

+ 2P (1− Γ)(1− P )
∞∑
i=2

∞∑
j=1

j−1∑
k=1

2−2(i+k) (P 2Γ(1− Γ)
)j
,

(C.17)

where we have summed the two contributions originating from equations (C.10)
and (C.16) over all generations i ≥ 2. Expanding the sums and simplifying, the
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void volume can finally be determined to be

Vv(P,Γ) =
P 5Γ3(1− P )2(1− Γ)2 (5− 2PΓ + 2P 3Γ2(1− Γ)

)
3(2− PΓ(1− P ))(1− 2PΓ(1− P ))(2− P 2Γ(1− Γ))(1− 2P 2Γ(1− Γ))

−
P 5Γ3(1− P )2(1− Γ)2 (2P 4Γ2(1− Γ) + 2P 2Γ(2− 3Γ)

)
3(2− PΓ(1− P ))(1− 2PΓ(1− P ))(2− P 2Γ(1− Γ))(1− 2P 2Γ(1− Γ))

+ P 3Γ(1− P )(1− Γ)2

6(1− P 2Γ(1− Γ))(4− P 2Γ(1− Γ)) + P 3Γ(1− P )
2 .

(C.18)
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